AUTHOR	Sklar, S. L., Comp.; And Others
TITLE	An Educational Finance Planning Model for Pennsylvania.
INSTITUTION	Pennsylvania State Dept. of Education, Harrisburg.
PUB DATE	Jun 72
NOTE	113p.
EDRS PRICE	MF-\$0.65 HC-\$6.58
DESCRIPTORS	Computer Programs; Costs; Educational Change;
	*Educational Finance; *Educational Trends; Enrollment
	Projections; Expenditures; *Financial Needs; *Models;
	Simulators; Teacher Supply and Demand; *Trend
	Analysis

ABSTRACT

The model described in this report is a computer program capable of projecting population, enrollment, teacher supply (within six age classifications) ; and expenditures and revenues for 10 years for each intermediate unit, the State, and four residence classifications: metropolitan-center city, metropolitan-other. suburban or small community, and rural. The model can be used to pretest the financial impact of various assumptions about future trends, such as the impact of nonpublic school closings and the resultant influx of students into the public schools. All output is in terins of intermediate unit, type of residence, and state total. Almost any kind of proposed change can be simulated provided the proposal is clearly stated and quantifiable. The model pretests the financial outcome of proposed changes or the assumption that the interaction of variables within the educational finance system will be unchanged 10 years hence. (Author/EA)

An Educational Finance Planning Model for Pennsy!vania

Compiled by: S. L. Sklar, Director of Research President's Commission on School Finance Clifford D. J. Lawrence, Research Associate President's Commission on School Finance and

Philip J. Mulvihill, Educational Research Associate
Division of Applied Research
Bureau of Educational Research
Pennsylvania Department of Education
June 1972
Commonwealth of Pennsylvania Milton J. Shapp, Governor
Department of Education John C. Pittenger, Secretary Neal V. Musmanno, Deputy Secretary
Office of Higher Education Warren E. Ringler, Acting Commissioner
Bureau of Educational Research Robert B. Hayes, Director
Division of Applied Research
John G. Cober, Director

TABLE OF CONTENTS

Page
Purpose, Objectives and Use 1
Purposes 1
Objectives and Uses 1
Long-Term Objectives and Uses 2
Summary 2
Datá Collection and Processing 3
Data Collection and Processing 4
Limitations on Input Data 10
Summary 12
Description of the Pennsylvania Educational Finance Planning Model 13
Output 25
General Description 25
Comparisons 27
Summary 27
Appendix A Type of Residence Classifications 32
Appendix B Intermediate Units 49
Appendix C Input Data. 52
Appendix D Sample of Output Format 78
Appendix E Program. 80
Appendix F Variable Names and Definitions 91
Appendix G User's Manual and Guide 96
References 107
Table Page

1. Comparison of Current Expenditure Output 28
2. Comparison of Total Expenditure Output 29
3. Comparison of Instructional Cost Output 30
4. Comparison of Teachers Salaries Output 31
5. Population by Intermediate Unit and Type of Residence for Pennsylvania 1970 53
6. Survival Rates by Type of Residence, Ages 0-19 54
7. Change in Millage Rate by Type of Residence (1968-69 to 1969-70) 54
8. Distribution of Nonpublic Enrollment Over Five Grade Levels. 54
9. Fertility Rates by Type of Residence 54
10. Migration Rates by Type of Residence and Intermediate Unit for Ten Years, 1960-1970 55
11. Enrollment Rates by Age and Grade. 57
12. Special Education Ratios 58
13. Per Cent of Total Enrollment in Nonpublic Schools by Type of Residence Within Intermediate Unit 59
14. Ratio of 1980 Nonpublic Enrollment to 1970 Nonpublic Enrollment by Type of Residence 60
15. Number of Teachers and Mean Salary by Six Age Classifications for Type of Residence Within Intermediate Unit 61
16. Pupil-teacher Ratios 62
17. Withdrawals from Teaching. 64
18. Hiring Rates 65
19. Expenditure Ratios 66
20. Transportation Data... 67
21. School Building Costs... 68
22. Special Education Costs.. 68
23. Density/Sparsity and Total Payments Minus
Density/Sparsity Per WADM by Intermediate
Unit, and Type of Residence... 69
24. Per Cent of Federal Revenue to Total Revenue by
Type of Residence and Intermediate Unit................... 70
25. Per Cent of Total Taxes Accounted for by Taxes Other than the Property Tax by Type of Residence Within Intermediate Unit70
26. Market Value, Total Taxes and Mills on Market
Value for Type of Residence Within Intermediate
Unit 71
27. Projected Receipts from Income Tax for Pennsylvania 72
28. Personal Income by Residence. 72
29. Elasticity Factors for Personal Income by Residence and Market Value 73
20 Miscellaneous Variables 74

The model is a computer program capable of projecting population, enrollment, teacher supply within six age classifications, expenditures and revenues for 10 years for each intermediate unit, the state and four residence classifications: (1) metropolitan--center city, (2) metropolitan-other, (3) suburban or small community and (4) rural.

The model has been developed around assumptions about future trends in population growth, enrollment characteristics, etc., and the interaction of the different variables within the educational finance system.

The model can be used to pretest the financial impact of various assumptions about future trends. For example, it can pretest the impact of nonpublic school closings and the resultant influx of students into the public schools. Or it can test the impact of increasing pupilteacher ratios. All output is in terms of intermediate unit, type of residence and state total. Almost any kind of proposed change can be simulated providing the proposal is clearly stated and able to be quantified, i.e., a proposed 20 per cent increase in pupil-teacher ratios. These changes can be made with varying degrees of ease, some being rather easily accommodated and others requiring substantial effort.

The model pretests the financial outcome of proposed changes assuming that the interaction of variables within the educational finance system will be essentially the same in 10 years as it is now.

CHAPTER I

PURPOSE, OBJECTIVES AND USE

A. Purposes

The President's Commission on School Finance submitted a proposal to the Pennsylvania Department of Education to undertake the development of an educational finance planning model. The primary purpose of this project was to develop a prototype model of the educational finance system in Pennsylvania and to test the feasibility of using a financial model framework developed on a national level at the state level.

The educational finance system is complex and few facts abcut the interaction of different variables within the system are available. Therefore, many of the interactions within the model are the result of subjective decisions and assumptions rather than hard empirical data. These decisions and assumptions, whenever possible, were tied to hard data, known economj.c relationships, research literature and the advice of experts. The model represents a description of the system of educational finance in Pennsylvania and from tha: viewpoint can be evaluated. At this point in. time, there seem to be few, if any, such descriptions and from that stance alone the model represents an achievement of some worth.

The presentation of the model which follows will discuss data processing and collection, a narrative description of the interactions within the model, a discussion of output and a set of appendices to include a detailed users guide.

B. Objectives and Uses

Because of the overall complexity of attempting to create a model that could eacompass all aspects of the educational finance system in Pennsylvania, a framework which would at a minimun be able to simulate using a wide range of assumptions about educational finance was developed. The model had to be able to accept data in the level of detail that could be developed within the time constraints of the agreement between the Commonwealth of Pennsylvania and the President's Commission on School Finance. The task was approached with the concept in mind that the mcdel created would be a prototype and would lead the way to continuing comprehensive model building efforts and planning efforts. The model development was also undertaken to be as flexible as possible in the follcwing areas of projection:

1. Projections of enrollments, using alternative assumptions related to population forecasting and enrollment trends.
2. Projections of teacher supply as a function of enrollments, hiring and rehiring assumptions.
3. Projections in expenditure levels required for various types of educational programs affecting certain target groups and dependent upon desired levels of program implementation.
4. Projections of revenue supply based upon alternative methods of financing education as related to population characteristics, economic forecasts, changes in taxation patterns and changes in distribution patterns.
5. Projection of differences between revenue supplied and expenditures anticipated for various kinds of school districts.

In addition, the model is designed to evaluate nonpublic enrol.1ment and financial needs, the impact of different levels of federal funding, and the testing of various methods of achieving economies in education.

B. Long-Term Objectives and Uses

1. The model can serve as a guide to developing models that handle data on a more discrete level than the intermediate unit.
2. The model can provide a method for pretesting the financial implications of educational decisions prior to legislative processes or policy making.
3. The model can be used by planning agencies to pretest the financial implications of several alternatives prior to deciding which alternative will be developed.
4. The model can be updated, refined and used on a continual basis.
5. The model can be revised to iorecast for longer periods of time, provided the trend data is available.

C. Summary

This project has resulted in the development of a model which can project educational finances under alternative assumptions. The model is a prototype and was developed under limited time constraints. As such, the concepts used for the prototypa should serve as the guide for future models. In its present stage the model is useful, provided the user is aware of the limitations surrounding the equations and the data. (See Chapter II, Section II for these limitations.)

CHAPTER II

DATA COLLECTION AND PROCESSING

The educational finance planning model is structured in such a manner than the basic unit is the intermediate unit as defined by law.* In addition, within each intermediate unit individual school administrative units have been grouped into one of four residence classifications: (1) metropolitan--center city, (2) metropolitan--other, (3) suburban or small community and (4) rural.**

This scheme allows data to be taken into the model in any of four ways:

1. By Intermediate Unit Data can be developed for the intermediate unit and applied to each type of residence within the unit (29 possible entries).
2. By Type of Residence

Data can be developed by type of residence on a state basis and applied to all intermediate units throughout the state (four possible entries).
3. By Type of Residence Within Intermediate Unit

Data at this level is the most preferable in that it recognizes all regional and residential differences (73 possible entries).
4. By State Level One factor, if available only on a state basis, can be assumed to be the same throughout the state. This is the least adequate kind of data used.

Virtually no one classifies data in terms of intermediate unit and type of residence. Therefore, one of the major tasks of the project was to take existing data that came in by county, school administrative unit, state or samples of counties and municipalities and try to convert it to either intermediate unit level, type of residence level, or type of residence within intermediate unit level.

[^0]
A. Data Collection and Processing

Data collection and processing activities were undertaken on three levels: (1) the collection of basic source data, (2) processing of source data for conformity to the model structure and (3) editing data bases for use as input into the model. This section will discuss briefly the format of the data used for model input. Detailed information on the collection and processing to include systems books and file layouts is contained in Data Preparation for the Pennsylvania Educationil Finance Planning Model, an in-house information publication.

1. Population
a. The basic input for the population sector of the model was the 1970 lst Count Census. This data exists in five-year age groups and is available by county and municipality.
(1) This data was prorated into population for individual years of age for county and major city using percentages obtained from 1960 census data. The assumption was made that there was the same percentage of each specific age in a five-year age group in 1970 as in 1960.
(2) The next step required prorating the population for age groups within counties into age groups within type of residence withir county. The percentages for prorating to type of residence within county were developed by using school district population data and residence classification. The percentages of all the school district population of a specific type of residence within a county was used as a standard percentage for prorating census data.
(3) The county-type residence population percentages were applied to the census data, providing a 1970 census figure for county and type of residence within county.
(4) The final step was summing the apprupriate residence classifications for counties comprising the intermediate units to create population by type of residence within intermediate unit.
b. Survival Rates
(1) Survival rates for ages 0-19 for 1960 to 1969 were over 99 per cent for Pernsylvania. It was assumed that this rate would be the same for 1970 to 1980 and a factor of .9999 was entered as the survival rate for each type of residence and applied to all ages in all intermediate units.
c. Fertility Rates
(1) 1970 fertility rates were calculated by first prorating the live births by county for 1970 on the basis of the percentage of population by type of residence within each county. These numbers were summed into a total number of live births for type of residence witinin the state. This sum was then divided by the number of women age 15-44 in that type of residence within the state. These figures were applied to each type of residence within each intermediate unit.

EXAMPLE: Fertility Rate $=\frac{\text { Total live births by type of residence }}{\text { Total women, } 15-44 \text {, by type of residence }}$
(2) 1980 fertility rates were arrived at by assuming that fertility rates would decline over 10 years. The rate of decline was calculated from projections of the fertility rate in Pennsylvania.
d. Increase in the Number of Mothers from Year to Year
(1) This figure was obtained from population projections developed by the Bureau of Educational Research, Department of Education.
e. Migration Rates
(1) Migration rates were developed for each county by comparing 1960 and 1970 popu? ation and creating a 10-year net migration rate.
(2) It was assumed that the net migration for 1970 to 1980 would be the same as that for 1960 to 1970.
(3) The county migration rates were prorated into residence classifications and summed into intesmediate unit totals to provide a net migration rate for type of residence within intermediate unit.

2. Enrollment

a. Public Enrollment
(1) A matrix was developed, using 1960 census data, to show both the percentage of studencs of a specific age in school and the percentage of each age group in a particular grade.
(2) The basic assumption was that these percentages would remain the same over 10 years, with the additional assumption that by 1980 five per cent of the 3 -year-olds and 15 per cent of the 4-year-olds would be in school.
b. Nonpublic Enrollment
(1) The percentage of nonpublic enrollment to total enrollment in 1970-71 was calculated for each type of residence within intermediate unit using existing state data.
(2) Ratios were developed from existing 1970-71 data to show the distribution of nonpublic enrollment over five giade levels on a statewdie basis: (1) preschool, (2) kindergarten, (3) grades 1-6, (4) 7-8 and (5) 9-12.
(3) For the basic model it was assumed that nonpublic enrollment would decrease as predicted by a report to the President's Commission on School Finance by the University of Notre Dame.
a. Special Education Enrollment
(1) A matrix was developed, from existing 1969-70 state data, to show the percentage of students with specific disabilities enrolled at different grade levels.
(2) It was assumed that these rates would remain the same between 1970 and 1980.
3. Teacher Supply and Demand
a. Pupil-Teacher Ratio
(1) Pupil-teacher ratios were calculated from existing state data. Pupil-teacher ratios for each school district were classified into type of residence within intermediate unit. These ratios were summed and averaged to provide an overall pupil-teacher ratio for type of residence within intermediate unit for 1970.
(2) It was assumed that the pupil-teacher ratio would decrease 10 per cent by 1980 .
b. Number of Teachers and Salaries
(1) Teachers were grouped into six age classifications:

Less than 25
25-29
30-39
40-49
50-59
greater than 59
 sallon and threir mean sidary for o ype ul residence within intermediate unit was obtained from existing state records for 1970-71.
(2) Gross salaries for substitute teachers were calculated from existing 1970-71 data for each intermediate unit.
(3) Mean teacher salaries for each intermediate unit were calculated from existing data.
c. Hiring Ratios
(1) The number of teachers hired within an age group as related to the total number of teachers hired was obtained from existing $1970-71$ state data.
(2) These ratios were created for each type of residence on a statewide basis.
d. Withdrawal Ratios
(1) The number of teachers in a specific age group who leave teaching as compared with the total number of teachers in that age group was obtained from existing 1970-71 state data.
(2) These ratios were created for each type of residence on a statewide basis.
4. Expenditures
a. Expenditure data was obtained from existing 1969-70 files. The following expenditure ratios were calculated for type of residence within intermediate unit:
(1) administrative salaries for education to total instructional salaries
(2) other administrative salaries to total administrative salaries
(3) other administrative costs to total administrative - salaries
(4) federal program administration to total federal revenue
(5) supervisors' salaries to teachers' salaries
(6) other instructional salaries to total salaries
(7) secretarial, etc., sałaries to teachers salaries
(8) instructional expenses to teachers salaries
(9) total pupil personnel expenditures to total instructional expense
(10) total operation and maintenance of plant to total instructional expense
(11) total fixed charges to total instructional expense
(12) total food services to total instructional expense
(13) total student activities to total instructional expense
(14) total community services to total instructional expense
(15) total other health services to total instructional expense
(16) the ratio of capital outlay to current expenditures
(17) the ratio of debt service to current expenditures
5. Revenue
a. Per pupil revenue for density and sparsity and per pupil revenue for other purposes was calculated from existing 1969-70 state data by type of residence within intermediate unit.
b. The per cent of federal revenue to total revenue was calculated from existing 1969-70 state data for each type of residence within intermediate unit.
c. The ratio of other local taves to total taxes for 1969-70 was calculated for each type of residence within intermediate unit to determine that portion of local revenue obtained from property tax.
d. The millage on market value was calculated from existing 1969-70 data for each type of residence within intermediate unit.
e. Total market value and rotal taxes were calculated for each type of residence within intermediate unit.
f. Elasticity factors which show a percentage change in market value as personal income changes were developed for each intermediate unit.
 was calculated 1 rom existing data obtalned trom the Statc Planning Board.
h. The following ratios were created by type of residence within intermediate unit from existing 1969-70 state data:
(1) total federal revenue to total revenue
(2) total state revenue to total revenue
(3) total local revenue to total revenue
i. Projected receipts from the state income tax were provided by the Department of Revenue, Commonwealth of Pennsylvania.
6. Transportation
a. A summary file of school transportation in Pennsylvania was created from existing 1969-70 state data which contains the following information by type of residence within intermediate unit:
(1) ratio of pupils transported to tctal pupils
(2) cost of transportation per pupil
(3) ratio of state reimbursement to total cost
(4) ratio of federal reimbursement to total cost
7. School Buildings
a. A file was created from existing $1960-70$ state data by type of residence within intermediate unit that contains the number of school buildings in eight age classifications for both elementary and secondary schools.
b. Existing state data on school building costs for 1969-70 was collected for type of residence as follows:
(1) pupil capacity
(2) total project cost
(3) original site cust
(4) architect': fee
(5) elementary, secondary or special
8. Change in Millage Rate
a. The per cent change in millage rate was developed by type of residence and applied to all intermediate units in the state.

$$
-0-\quad-5
$$

The per cent difference between 1968-69 millage and 1969-70 millage was calculated from existing state data.

9. Inflation Factor

a. It was assumed that inflation would cSntinue at a rate of two per cent a year.
10. Real Increase in Teachers' Salaries
a. It was assumed that teachers'salaries would increase at a rate of .5 per cent a year.
11. Special Education Costs
a. Special Education costs were obtained at the state level by several specific categories.
B. Limitations on Input Data

1. Rate of Inflation
a. This variable was assin ned to be two per cent. It is questionable whether or not the rate used is accurate or whether it will hold for 10 years. However, it was necessary to account for this factor in the model and an inflation rate of two per cent annually appears to be rather conservative.
2. Rate of Real Increase in Teachers' Salaries
a. It was assumed that the real increase in teachers' salaries would be .5 per cent annually. It should be noted that this figure is used in reference to the average salary of large groups of teachers and not to individual salaries. There is no empirical evidence to support using .5 per cent in this instance; however, it appears reasonable to assume that teachers" salaries will continue upward and that the inflation factor of two per cent and the real increase factor of .5 per cent represent modest increases in teachers' salaries.
3. Cost Per Pupil of Various Special Education Programs
a. This data represents statewide cost for specific categories of special education. Although the assumption can be made that these costs apply to all intermediate units and all types of residence, it appears obvious that there are differences between areas. This data should be collected for type of residence within intermediate unit in order to account for the necessary differentials.
4. Distribution of Nompubile En rollment Over lirade: Levels
a. This data was developed on a statewide basis and applied to all types of residence and intermediate units. It should be collected by type of residence within intermediate unit.
5. Ratio of Special Education Pupils by Program and Type of Residence to Public Enrollment
a. This data was develcped by type of residence using sample county level data and applied to all intermediate units. Greater accuracy could be obtained by collecting special education ratios specific to type of residence within intermediate unit.
6. Migration Rates for Age Groupings for Type of Residence Within Intermediate Unit
a. This data does not reflect rates developed from actual data. Rather it represents combining and adjusting county rates to reflect approximations of rates for type of residence within intermediate unit. These rates would provide greater accuracy within the model if developed from the data for the specific type of residence within intermediate unit.
7. School Age Participation Rates for 1970-1980
a. This data represents the percentage of a specific age group in school and was developed from 1960 data. In addition, it was created on a statewide basis which creates further inaccuracies. This data should be developed at the minimum by type of residence and preferably by type of residence within intermediate unit using 1970 census data.
8. The Percentage of a Specific Age Group in a Specific Grade
a. This data was developed from 1960 data and on the state level. Additional accuracy could be gained by creating the rates either by type of residence or by intermediate unit using 1970 data.
9. The Ratio of 1980 Nonpublic Enrollment to 1970 by Type of Residence
a. This data was extracted from research done for the President's Commission on School Finance and is on a state level. There is question as to whether these figures are accurate for each intermediate unit. However, it does not secm practical to try to develop these ratios on any other basis since the current situation is fluid and the accuracy of any such projected ratios would be equally questionable.
10. The Ratio of Teachers Hired Within a Particular Age Group to Total Hirings by Type of Residence
a. These ratios were developed on a state level by type of residence. It might be worth the effort to create these ratios by type of residence within intermediate unit to both provide greater accuracy and examine differentials.
11. The Proportion of a Teachers Withdrawing from an Age Category (See comment for 10 above)
12. The Rate of Change in Market Value as Personal Income Changes
a. This data was developed on an intermediate level. The question here is can personal income be related to market value. It is possible that econometric variables can be found that would be highly related to market value and for which projections exist, however, in this model the data from personal income was available and was used. The question of relationship still exists.
13. Change in Millage Rate by Type of Residence (1968-69 to 1969-70)
a. This data should be developed on type of residence within intermediate unit for several years in order to increase the accuracy of the projections.
C. Summary

This chapter has provided a brief description of the data collection activities needed to develop the model and also a narrative description of the data itself. Sample data is provided in Appendix C. The section on data limitations is particularly important in that it allows the reader to assess the weakness in the output. Refinement of the model should include eliminating as many of the limitations as possible.

CHAPTER III

DESCRIPTION OF THE PENNSYLVANIA EDUCATIONAL FINANCE PLANNING MODEL

The simulation model (Appendix E) has extensive documentation included with the coding. By using the following description, in addition to the model coding, it should be fairly easy to understand the methodology and equations used. Reference numbers have also been included to facilitate cross checks against the program.*

For some variables, values for two points in time are given; the initial year and the final year. A statement function (REF. 1) is then used to linearly interpolate between these two points to give the variable a value at a set time. This interpolation is performed on the following data:

Distribution of nonpublic enrollment over grade (REF. 2)
Fertility rates (REF. 3)
Age/school participation rates (REF. 4)
Migration rates (REF. 5).
Proportion of enrollment which is nonpublic (REF. 6)
Pupil-teacher ratios (REF. 7)
Personal income by residence (REF. 8)
It is not necessary to increment within this model at yearly intervals. In fact, a more suitable model results when incrementation is taken at quarterly or half intervals. This means that those rates which are read in as annual rates must be adjusted for the incrementing period. The following are adjusted:

Statewide increase in women 15/44 (REF. 9)
Inflation rates (REF. 10)
Real increases in teachers' salaries (REF. 11)
Survival rates (REF. 12)
The effects of inflation are included in this model. The following costs have been adjusted for inflation:

[^1]Special education costs (REF. 13)
Teachers' salaries (also adjusted for real increases) (REF. 14)
Density-sparsity payments (REF. 15)
Other state payments (REF. 16)
Per pupil cost of construction of school buildings (REF. 17)
Per pupil cost of transportation (REF. 18)
There are three major loops in the model. There is the time loop (REF. 19) which pushes the time frame ahead by one period each time all the operations have been completed within the other two loops. The other two loops allow the model to consider each intermediate unit (REF. 20) and all four types of residence (REF. 21) within an intermediate unit. A conditional statement moves the model to the next residence category or intermediate unit (REF. 22) should a type of residence not exist within the specific intermediate unit.

Fot each basic unit the following operations are performed within each time period:

1. Population Sector

REF. 23

(Supply of women
$15 / 44$ for new
time period)
:---
in number of women
statewide)
:---
for previous time
period)

x (1 + net migration rate for women)

REF. 24
Births $=$ (Fertility rates) x (Number of women 15/44)
Then for each age group between 0 and 19, the following equations are used:

REF. 25

x (Survival rate)
The effect of aging into the next age group is calculated assuming homogeneous distribution of births over the year.

REF. 26

(Number who
age into next group)\quad(New number in age group $)$$\quad x \quad$(1/incrementation period)

REF. 27

Total population in age group$=$(Number entering age group* from lower age group)	
	(Number leaving age group for next age group)
	(Number in age group before

Thus, from the population sector, the model has generated for each time period population by single years of age. This allows one to proceed directly into calculating enrollments.

2. Enrollment Sector

REF. 28

(Total en rollment
for specific grades
by years of age)

$\quad x \quad$| (Population for |
| :---: |
| age group) |\quad| (Proportion of |
| :---: |
| age group |
| participating |
| in school) |

in school in specific grade)

These enrollments by single years of age and grade are combined to give enrollments by the following grade groupings:

Prekindergarten (REF. 29)
Kindergarten (REF. 29)
Grades one through six (REF. 29)
Grades seven through eight (REF. 29)
Grades nine through 12 (REF. 29)
Total enrollment (REF. 30)
REF. 31

(Total. nonpublic enrollment)	```(Total enrol1ment)```		(Ratio of nonpublic to total enrollment)

REF. 32

(Nonpublic enrollment
by grade grouping)
:---
nonpublic
enrollment in
grade group)
:---
enrollment)

[^2]REF. 33

```
(Total public \leqslantTotal (Total nonpublic
    enrollment) = enrol.lment) - enrollment)
```

REF. 34

(Public en rollment
by grade group)
:---:
by grade group)
:---:
by grade group)

For each special education program:

REF, 35

(Enrollment in special

education programs by $=$\begin{tabular}{l}
(Ratio of special

education public $\quad \mathrm{grade}$ group)

\quad

(Public enrollment

enrollment by grade group)

grade group)
\end{tabular}

REF. 36

(Enrollment in special education programs)	Sum of all	(Enrollment in special education programs by grade group)

REF. 37

(Total special \begin{tabular}{l}
education

enrollments by $=$ Sum of all

grade group)

(Enrollments in all

special education

programs for a

grade group)
\end{tabular}

REF. 38
(Enrollment Sum over weighted by $\quad=$ all grade state weighting) groups
$\left[\begin{array}{cc}\text { (Enrollment } & \\ \text { for each } & \text { (State } \\ \text { age group) } & \\ \text { weighting } \\ \text { factors) }\end{array}\right]$

REF. 39

Enrollment in regular programs (Weighted for attendance)

The sum of all
$=$ grade groups

[^3]**Utilization of resources to avoid double counting of prekindergarten and and kindergarten; . 5 for PreK and K and 1 for all other.

3. Teachers

Once one has the enrollment in regular prograns, it is fairly easy to calculate demand for teachers.

REF. 40
Demand for teachers $=\underset{\text { regular programs })}{(\text { Enrollment in }} / \begin{aligned} & \text { Pupil-teacher } \\ & \text { ratios }\end{aligned}$
The next task is to obtain the number of teachers presently teaching in the system. Reasons for teachers withdrawing from the system are broken into two categories--withdrawals that occur at any time during the year (death, pregnancy, etc.) and withdrawals which occur atend of school year (transfer, retirement).

REF. 41

REF. 42 (For each age group)

REF. 43 (For each age group)

| (Number of
 teachers aging
 into next group) |
| ---: | :--- |$=$| Number of
 teachers
 after
 withdrawals) |
| :--- |
| |
| x (Annual proportion |
| (1/incrementing |
| which leave age group) |

[^4]REF. 44 (For each age group)

(Number of teachers)	(Number of teachers after withdrawais)	(Number entering* from lower age group)
	- (Number** aging to next age group)	

REF. 45
(Total number
of teachers in $=$ The sum for (Number of teachers systembefore all age groups in age group) hirings)

REF. 46
Total new hirings*** $=$ (Demand for - (Total number of teachers) teachers in system)

REF. 47
(Hirings by

age group) \quad\begin{tabular}{c}
(Total

hirings)

\quad

(Ratio of hirings per age

group to total hirings)
\end{tabular}

REF. 48

(Number of
teachers in each age group)
:---
system before hiring
in each age group)
:---:
each age group)

REF. 49
$\left.\begin{array}{l}\begin{array}{l}\text { (Total salary for } \\ \text { regular teachers) }\end{array}=\begin{array}{l}\text { Sum over } \\ \text { each age group }\end{array}\left[\begin{array}{l}\text { (Number of } \\ \text { teachers in } \\ \text { each age group) }\end{array} \begin{array}{l}\text { (Average } \\ \text { salary } \\ \text { for each } \\ \text { age group) }\end{array}\right.\end{array}\right]$

```
(Total salary for (Total salary for (Cost of special
    both regular and = regular teachers) + education)
    special education
    teachers)
```

x (Ratio of special education costs attributed to teachers)

[^5]REF. 51

```
        (All teachers' (Total salary for
        salaries including = both regular and x (1 + fringe factor)
        fringe benefits) special education
                        teachers)
4. Building Sector
```

A flow similar to that used in the population and teacher supply sector of this model is used in the building sector.

REF. 52

| (Per pupil capacity
 of buildings after
 replacement needs) |
| :--- |$=$| (Per pupil |
| :--- |
| capacity |
| from previous |
| period) |$\quad \times \quad$| (l-proportion of |
| :--- |
| buildings of that |
| age to be replaced) |

REF. 53
$\underset{(\text { Per pupil building }}{\text { capacity aging into }}=1 / 10 \times \frac{1}{\begin{array}{l}\text { incrementing } \\ \text { period }\end{array}}$ next category) period
x (Per pupil capacity of buildings after replacement needs)

REF. 54

(Per cent building capacity within category)	(Building capacity of previous period within category)	(Building capacity aging into this category)

Building capacity for elementary and secondary students is calculated (REF. 55) as well as enrollments in elementary and secondary schools (REF. 56). Thus, demand for new buildings is calculated as the difference between capacity and number of students (REF. 57).

REF. 58 (The following is calculated for both elementary and secondary schools.)

Capacity of (New buildings* (Capacity of buildings buildings in $=$ to meet demand) + for category 1 in category 1 previous period)

REF. 59

(Cost of new
buildings)

Sum for
elementary
and secondary

cal ?ity)\end{array} \quad $$
\begin{array}{c}\text { (Per pupil } \\
\text { cost of } \\
\text { construction) }\end{array}
$$\right]\)

5. Revenue Sector

REF. 60

```
(Effective (Previous (1 + change in
    millage rate) = millage rate) x millage rate)
```

REF. 61

Present market	(Base market		(Per cent change
value	value)		in personal income)

```
x (Base market x (Elasticity factor)
    value)
```

REF. 62

Total local taxes	(Market value)		(Effective millage rates)

REF. 63

(Local taxes from
other source)
:---:
taxes)
:---:
to total local revenue)

REF. 64

```
Property tax = (Total local tax) - (Local taxes from
                                    other sources)
```

REF. 65

(Density-sparsity
payments)
:---:
payments per WADM)

REF. 67

```
(Total state and (State
    local revenue) = funds) + (Local taxes)
```

*This variable is restricted from being zero

REF. 68

```
(Federal (Ratios of federal funds (Total state and
    revenues) = to total state and local) x local revenues)
```

REF. 69
(Total $=$ (Federal + (Total state and
6. Expenditure Sector

REF. 70

(Federal program
administration costs)
:---
revenue)
:---
administration costs to
federal funds)

REF. 71

(Supervisors' $=$| (Total teachers' |
| :---: |
| salaries) |
| salarjes) |\quad (Ratio of supervisors

to teachers)

REF. 72
(Cost for other (Ratio of othèr instructional instructional salaries) $=$ salaries to teachers' salaries)
x (Teachers' salaries)
REF. 73

Secretarial $=$| (Ratio of secretarial |
| :--- |
| salaries |
| salaries to teachers' |
| salaries $)$ | salaries ${ }^{\prime}$

REF. 74

```
(Other instructional (Ratio of other instructional
    costs) = costs to teachers' salaries)
    x (Teachers' salaries)
REF. }7
```


REF. 76

```
(Administrative (Ratio of administrative
salaries,education) = salaries, education to
                                    total instructional salaries)
                                    x (Total instructional salaries)
```

REF. 77
$\begin{aligned} & \text { (Other administrative } \\ & \text { salaries) }\end{aligned}=\begin{aligned} & \text { (Ratio of other administrative } \\ & \begin{array}{l}\text { salaries to. administrative:salaries, } \\ \text { education) }\end{array}\end{aligned}$
x (Salaries for administration-
education)

REF. 78
(Other administration
(Ratio of other adminstrative costs) = costs to administrative salaries)
x (Total administrative salaries)
REF. 79

(Total administration
costs)
:---
salaries, education
:---
+
salaries, other

+| (Other |
| :--- |
| administrative |
| costs) |

REF. 80

(Total instructional
costs)
:---
salaries)
:---
costs)

REF. 81

(Total pupil
personnel costs)
:---
personnel costs
to instructional
costs)
:---
costs)

REF. 82

(Costs of operations and maintenance)$=$	(Ratio of operations and maintenance costs to instructional costs)
	x (Instructional costs)

REF. 83


```
REF. }8
\begin{tabular}{rl} 
(Food services \\
coscs)
\end{tabular}\(=\)\begin{tabular}{l} 
(Ratio of food \\
services costs \\
to instructional \\
costs)
\end{tabular}\(\quad \times \quad\) (Instructional costs)
```

REF. 85

(Student activities
costs)
:---
activity to
instructional costs)
:---
costs)

REF. 86

| (Cost for |
| ---: | :--- |
| community |
| services) |$=$| (Ratio of community |
| :--- |
| services costs to |
| instructional costs) |$\quad \mathbf{x} \quad$| (Instructional |
| :---: |
| $\cos t s)$ |

REF. 87

(Cost for
health
services)
:---
services to
instructional costs)

REF. 88
(Transportation costs) $=$ (Cost per pupil transported)
x (Total enrollment)
x (Proportion of enrollment transported)

REF. 89

REF. 90

```
Debt service = (Ratio of debt x (Current expenditures)
                service to
                current expenditures)
```

REF. 91

(Capital
expenditures)
:---:
expenditures to current expenditures)
:---
expenditures)

REF. 92

The above equations cover all operations performed on each basic unit. The next two sections of the model aggregate the data from the basic unit into three levels: intermediate unit, statewide by type of residence, and total state (REF. 93).

The final section then converts this aggregated data into interger format suitable for writing out (REF. 94).

The equations illustrate the rationale used in calculating different outputs and provide a base for relating to the flow of the model. This description, used in conjunction with Appendix E, should allow the reader to fully comprehend the entire model.

CHAPTER IV

OUTPUT

A. General Description

This section contains selected projections to illustrate the results of the model. The original model output has been called the Basic Model and is based on the following assumptions:

1. Population
a. Fertility rates will decrease between 1970 and 1980.
b. Survival rates will remain constant between 1970 and 1980.
c. Migration rates for basic units will be the same for the period 1970-1980 as they were in 1960-1969.
2. Enrollment
a. The percentage of students of a specific age in school will be the same for the period $1970-1980$ as it was in 1960 except for preschool ages which will increase.
b. The percentage of a particular age in a specific grade will be the same for the period 1970-1980 as it was in 1960.
c. Nonpublic enrollment will decrease as predicted by a report prepared for the President's Commission on School Finance by the University of Notre Dame.
d. Special education incidence rates will be the same for the period 1970-1980 as they were in 1969.
3. Teacher Supply/Demand for Salary
a. There is an infinite pool of possible teachers.
b. Teacher will withdraw from the system and be hired into the system at the same rates during the period 1971 to 1980 as they were in 1970.
c. Teachers' salaries will increase annually by a factor of two per cent for inflation and a factor of .5 per cent for real increases.
d. The pupil-teacher ratio will decrease by 10 per cent from 1971 to 1980.

4. Expenditures

a. Expenditures, other than transportation, are derived from total teachers' salaries and the relationships are assumed constant between 1970 and 1980.*
b. Transportation costs are derived by taking the cost per pupil (adjusted for inflation) multiplied by the number of pupils.
5. Revenue
a. Effective millage rates would increase at the same annual rate as they did between 1968-1969.
b. Personal income for intermediate unit and type of residence would be as predicted by the State Planning Board.
c. Market value increase or decreases are related to personal income increases or decreases.
d. Local tax revenues are computed from millage on market value.
e. Property tax revenue and other tax revenue will reflect the same percentages of total local taxes in 1980 as they did in 1969.
f. State revenue is calculated by assuming increases for inflation of the present base year data until 1980.
g. Density/sparsity payments are assumed to increase because of inflation until 1980.
h. Federal revenue is assumed to reflect the same percentage of total state and local revenue in 1980 as it did in 1969.

One projection was made using the basic model. Then three additional projections were made using the basic model with a change in one assumption. These simulations were:

Basic model except pupil-teacher ratios were increased to the 1960 level by 1980 instead of decreased by 10 per cent.

Basic model without decreasing nonpublic enrollment by 1980.
Basic model except nonpublic enrollment is decreased to 0 by 1980.

[^6]These three simulations illustrate the possible use of the model. Any of the basic assumptions can be changed to reflect different "feelings" about future trends.

Tables 1, 2, 3 and 4 represent comparisons of projections made by the model using the basic run and the three simulations. The areas compared are current expenditures, total expenditures, instructional costs and teachers' salaries (Appendix D provides an example of the format of the print-out sheet and illustrates the kind of output provided for 29 intermediate units, four types of residence and state total).

B. Comparisons

Tables $1,2,3$ and 4 represent the differences in cost between the basic model projections and simulations under different conditions. For example, Table 2 illustrates that if the pupil-teacher ratio is increased to its 1960 level by 1980 , instead of being decreased by 10 per cent, the difference in total expenditures would be a decrease of 18 per cent for the state by 1980. The simulated data is compared against projections from the basic run assuming the basic run reflects the "most likely" circumstances in 1980.

Some basic findings can be stated if the assumptions made in the basic model are accepted as the "most likely" set of conditions in 1980:

1. Increasing the pupil-teacher ratio appears to be one way of significantly decreasing school costs.
2. If the nonpublic student population stays at the same proportion of public in 1980 as in 1970 the increase in expenditures would be less severe because of decreasing enrollments.
3. If nonpublic enrollment decreases to 0 by 1980 , the effect on state expenditures will be only slightly higher than it would have been with less of a decrease in nonpublic enrollment. However, this condition would increase some individual intermediate unit costs by greater than 10 per cent and it appears as though all center cities would show high cost increases.

C. Summary

The output from these simulations must be interpreted in terms of the assumptions made in building the basic model. These projections were made using the best data available within the time constraints and the interrelationships stated in Chapter III. Only on these terms is the output usable.
Simulations
$1=$ Pupil-teacher ratio increased to 1960 level by 1980
$2=$ Nonpublic ed.rollment same in 1980 as 1970 $2=$ Nonpublic enrollment same in 1980 as 1970
$3=$ Nonpublic enrollment decreases to 0 by 1980
CURRENT EXPENDITURES* (Selected Output Data)
TABLE 1

Simulatio $1=$ Pupil $2=$ Nonpub 3 = Nonpu	eacher: r ic ed.rol ic entol	tio incre ment same ment decr	ased in 1 lases	to 1960 1980 as 19 to 0 by	$\begin{gathered} \text { leve } \\ 1970 \\ \hline 198 \end{gathered}$	1 by 1980			RRENT EXP lected Ou	$\begin{aligned} & \text { PENDIT } \\ & \text { utput } \end{aligned}$	$\begin{aligned} & \text { TURES* } \\ & \text { Data) } \end{aligned}$							$!$			
				$\begin{gathered} 1972 \\ \text { Simulatio } \end{gathered}$							$\begin{gathered} 1976 \\ \text { Simulati } \end{gathered}$							$\begin{gathered} 1980 \\ \text { Simulatio } \end{gathered}$			
		\$ 1	$\underset{\text { diff }}{\mathbf{Z}}$	$\$ 2$		$\$ 3$	$\bar{z}_{\text {diff }}$		\$ 1	$\underset{\text { diff }}{\frac{7}{2}}$	\$ 2		\$ 3			\$1	${\underset{\text { diff }}{z}}^{z}$	$\$ 2$	$\underset{\operatorname{diff}}{\underset{2}{2}}$	\$ 3	${\underset{d i f f}{z}}^{z}$
1	464657	441309	-5	441569	-5	478186	3	585775	501015	-15	503613	-15	635302	8	815048	633918	-23	644600	-21	919503	11
2	196019	187173	-5	188231	-4	199425	2	231807	303457	-13.	207596	-11	243297	4	295615	244194	-18	252267	-15	316548	7
3	804619	776882	-3	790390	-2	810516.	1	922788	814561	-12	876758	-5	944091	2	1149933	959476	-17	1067673	-8	1189297	3
4	242395	237479	-2	240871	-1	242506	0	272769	243643	-11	266779 :	- 3	274821	0	335676	283763	-16	325130	-4	339720	1
State Total	1707683	1642837	-4	1661053		1730627	1	2013123	1762670	-13	1854739	-8	2097504	4	2596270	2121347	-19	2289267		2765064	6
Selected Intermediate Unite																					
2	65104	61427	-6	61235	-6	67321	3	81605	69170	-16	66120	-19	90368	10	118990	91481	-24	86328	-28	138443	16
	163634	158900	-3	159516	-3	165544	1	183623	161605	-12	170757	-8	189710	3	225536	187541	-17	203105	-10	236303	4
10	30255	29575	-3	30040	-1	30240	-1	35056	31213	-11	34375	- 2	35246	0	44388	37504	-16	43166	-3	44820	0
17	36564	35861	-2	36387	-1	36516	-1	41080	36555	-12	40529	- 2	41204	0	49974	42211	-16	49062	- 2	50263	0
19	38631	37022	-5	37695	-3	39099	1	46090	40564	-12	43113	- 7	47686	3	58827	48409	-16	53045	-10	62003	,
20	39003	38817	-1	38895	-1	39002	0	44654	39088	-13	42183	-6	45952	2	58408	47394	-19	53481	-9	61120	4
26	247802	235280	-6	233226	-	256911.	3	317117	271518	-15	266811	- 6	348487	9	440553	342569	-23	. 336673	-24	505321	$1 /$
27	32218	31271	-3	31833	-2	32356	0	35693	31585	-12	34598	-4	36181	1	43532	36694	-16	41650	- 5	44408	2

*thouande of dollare
Simulations
TABLE 2
(10nelation

$\begin{aligned} & 1=\text { Pupil-t } \\ & 2=\text { Nonpubl } \\ & 3=\text { Nonpubl } \end{aligned}$	eacher ra ic enroll ic enroll	tio incr ment same ment dec	$\begin{aligned} & \text { eased } \\ & \text { e in } 1 \end{aligned}$ reases	$\begin{aligned} & \text { to } 1960 \\ & 1980 \text { as } 1 \\ & \text { s to } 0 \text { by } \end{aligned}$	$\begin{gathered} \text { leve } \\ 1970 \\ y 198 \end{gathered}$	$\begin{aligned} & 1 \text { by } 1980 \\ & 10 \end{aligned}$			$\begin{array}{r} \text { TOT } \\ \text { (Sele، } \end{array}$		PENDITUR Output D	$\begin{aligned} & \text { ES* } \\ & \text { ata) } \end{aligned}$									
	Basic			1972 Simulati	ons			Basic			$\begin{gathered} 1976 \\ \text { Simulati } \end{gathered}$				Basic			$\begin{gathered} 1980 \\ \text { Simulat } \end{gathered}$			
Type of ${ }^{\star *}$ Residence		$\$ 1$	$\stackrel{2}{d i f f}$	$\$ 2$	$\underset{\text { diff }}{\pi}$	$\$ 3$			\$ 1	$\begin{gathered} z \\ d i f f \end{gathered}$	$\$ 2$	$\frac{7}{d i f f}$	$\$ 3$	${\underset{\text { diff }}{2}}^{2}$		$\$ 1$	$\stackrel{2}{\text { diff }}$	$\$ 2$	$\stackrel{7}{d i f f}$	$\$ 3$	$\overline{z i f f}_{\operatorname{dif}}$
1	512627	486950	-6	487225	-5	527515	2	646163	552652	-15	555630	-14	700737	8	899035	699209	-22	711212	-21	1014138	13
2	225566	215411	-5	216607	-4	229487	1	266754	234144	-12	238868	-10	279994	5	340260	281066	-18	290324	-15	364381	7
3	940927	908527	-4	924272	-2	947863	1	1079139	952513	-12	1025195	- 5	1104164	2	1344935	1121971	-17	1247995	-7	1391144	3
4	281226	275510	-3	279450	-1	281363	0	316483	282675	-11	309941	- 2	318887	1	389482	329208	-15	377168	- 3	394213	1
State Total	1960340	1886392	-4	1907547	-3	1986222	1	2308535	2021978	-12	2129178	- 8	2403778	4	2973708	2431449	-18	2626695	-12	3163872	6
Selected Inter- mediate Units																					
2	71764	67711	-6	67499	-6	74208	3	89953	76247	-15	72884	-19	99612	11	131163	100840	-22	95159	-27	152595	16
3	188331	182934	-3	183607	-3	190529	1	211268	185947	-12	196487	- 7	218266	3	259472	215772	-17	233700	-10	271849	5
10	34504	33731	-2	34259	-1	34478	0	39976	35594	-11	39200	- 2	40193	1	50617	42767	-16	49224	- 3	51108	1
17	43010	42187	-2	- 42804	-1	42955	0	48329	43000	-11	47674	- 1	48466	0	58780	49651	-16	57710	- 2	59114	0
19	42289	40533	-4	41270	-2	42796	1	50424	44394	-12	47191	- 6	52153	3	64298	52950	-18	58026	-10	67732	5
20	. 46462	46242	-1	46335	0	46462	0	53187	46567	-12	50242	- 6	54737	3	69581	56451	-19	63704	-8	72819	5
26	272756	258793	-7	256712	-6	282782	4	349051	298860	-14	293679	-16	383580	10	484917	377065	-22	370576	-24	556207	15
27	37014	35936		36577	-1	37169	0	. 40987	36272	-12	39745	- 3	41539	1	49971	42125	-16	47837	-4	50963	2

[^7]Simulations
TABLE 3
INSTRUCTIONAL COSTS*
(Selected Output Data)

Type of ${ }^{* *}$ Residence	Basic Model	1972 Simulations						Basic Model	1976 Simulations						Basic Model	$\begin{gathered} 1980 \\ \text { Simulations } \end{gathered}$					
		\$1	$\begin{gathered} z \\ d i f f \end{gathered}$	\$ 2	$\begin{gathered} \mathrm{Z} \\ \text { diff } \end{gathered}$	$\$ 3$	$\begin{gathered} 2 \\ \operatorname{dif} f \end{gathered}$		\$ 1	$\begin{gathered} 2 \\ d i f f \end{gathered}$	\$ 2	$\begin{gathered} z \\ \text { diff } \end{gathered}$	\$ 3			\$ 1	$\begin{gathered} \text { Z } \\ \text { diff } \end{gathered}$	$\$ 2$	$\begin{gathered} \pi \\ \text { diff } \end{gathered}$	$\$ 3$	$\begin{gathered} \frac{2}{d i f f} \end{gathered}$
1	348352 143600	331218 137152	-5 -4	331389 137978	-5 -4	359507 146413	3 2	441754 170993	377582 149794	-15	379556	-14	480556	9 5	617571 219476	479601 180838	-22	487755	-21 -15	698529	13
3	593522	572720	-4	583263	-2	598816	1	687247	603922	-12	652471	- 5	704548	3	864901	717721	-17	801868	-7	896251	4
4	175620	172071	-2	174743	-1	176027	0	200366	177786	-11	195991	-2	202325	1	250308	209829	-16	242369	- 3	253861	1
State Total	1261088	1213155	-4	1227367	-3	1280757	2	1500354	1309078	-13	1381024	- 8	1567367	4	1952251	1587982	-19	1719079	-12	2084224	7
Selected Inter- mediate Units		.																			
2	46712	44412	-5	44270	-5	48761	4	59979	50220	-16	47969	-20	65861	10	86567	66699	-23	62896	-27	101343	17
3	119517	116049	-3	116505	-3	121091	1	135204	118593	-13	125567	- 7	139994	4	167403	138659	-17	150523	-10	175794	5
10	21940	21437	-3	21835	-1	21992.	0	25733	22802	-11	25275	- 2	25955	1	33010	27712	-16	32140		33432	1
17	26549	26072	-2	26481	-0	26582	0	30168	26711	-11	29815	- 2	30339	1	37199	31221	-16	36571	- 2	37504 45752	1
19	27806	26606	-4	27121	-2	28183	1	33566	29387	-12	31339	- 7	34800	3	43319	35420	-18	38968	-10	45752	3
20	28485	28391	0.	28435	0	28536	0	34654	28675	-17	31055	-10	33937	2	43453	-35077	-19	260130	-24	391891	15
26	190273	180490	-5	178885	-6	197390	4	244677	209052	-15	205374	-16	269186	10	341289	264736 26939	-23 -16	260130 30716	-24	391891	12
27	2332\%	22636	-3	23063	-1	23458	1	26079	22982	-12	25279	- 3	26475	2	32111	26939	-16	30716	4	32801	2

AThousands of dollare
$* * 1=$ Metropolitan--Center City, $2=$, etropolitan--Other, $3=$ Suburban or small community, 4 = Rural

Simulations

TABLE 4

[^8]APPENDIX A
TYPE OF RESIDENCE CLASSIFICATIONS

Each school administrative unit in the state was assi.gned one of the following residence classifications. The numbers were assigned by considering population, proximity to center city and a general knowledge of the state in terms of demographic characteristics:
$1=$ Metropolitan, Center City--School districts whthin the thickly settled urban core of a larger standard metropolitan area.
$2=$ Metropolitan, Other--School districts bordering the central city that are the densely populated fringe ör the urban core.
$3=$ Nonmetropolitan, Suburban or Sma 11 Community-(a) School districts near urban areas that are not a part of the urban fringe and (b) school districts in small communities detached from urban areas and serving as a center for surrounding rural areas.
$4=$ Nonmetropolitan, Rural--(a) Rural school districts where the population is composed largely of farm population or from smell communities and (h) large countywide or combined districts in rural counties.

Adams

Upper Adams 4
Bermudian Springs 4
Littlestown Area 4
Fairfield Area 4
Gettysburg Area 3
Conewago Twp. 4
New Oxford Area 4
Allegheny
North Allegheny 3
Quaker Valley 3
Avalon Boro. 2
North Hills 3
Bellevue Boro. 2
Babcock 3
Hampton Twp. 3
Fox Chapel 3
Braddock Boro. 2
Allegheny Valley 3
Highland Area 3
Deer Lakes 3
Plum Boro. 3
Gateway Area 3
Churchill Area 3
Wilkinsburg 2
East Allegheny 2
Elizabeth-Forward 3
East Pittsburgh 2
Clairton City 2
Edgewood Boro. 2
West Jefferson Hills 3
Baldwin-Whitehall 3
Mt. Lebanon 3
Etna Boro. 3
Upper STt. Clair 3
Bethel Park 3
Chartiers Valley 3
Keyst one Oaks 3
Mont our 3
Carlynton 2
Sto-Rox 2
West Allegheny 3
Pittaburgh 1
AII egheny (contd.)
Avonworth 2
Homestead Boro. 2
Duquesne City 2
Brentwood 2
South Park 3
South Fayette 3
Millvale 3
Moon Union 3
Munhall Boro. 3
Nevilie 2
North Braddock 2
Oakmont 3
Penn Hills 3
Rankin Boro. 2
Reserve 3
Shaler 3
Swissvale 2
Turtle Creek 2
Verona 3
West Homestead 2
Coraopolis 3
McKeesport Area 2
West Miffilin 3
South Allegheny 3
Armstrong
Armstrong 3
Apollo Ridge 3
Freeport Area 3
Leechburg Area 3
Peaver
Ambridge Area 2
Black Hawk 3
Big Beaver Falls 3
Monaca 3
Baden-Econory 2
Beaver Area 3
Western Beaver 4
Midland Boro. 2
Hopewell Area 3
Aliquippa Boro. 2
Center Twp. 3
Freedom Area 3
Rochester Area 3
New Brighton 3
Northeastern Beaver 3
Beaver (contd.)
South Side Area 3
Harmony Twp. 4
Potter Twp. 4
Bedford
Bedford Area 3
Chestnut Ridge 4
Everett Area 4
Northern Bedford Co. 4
Tussey Mountain 4
Berks
Boyertown 3
Brandywine 4
Conrad Weiser 3
Daniel Boone 3
Exeter 2
Fleetwood 4
Governor Mi:fflin 3
Hamburg 3
Kutzt own 3
Antietam 2
Muhlenberg 2
Oley Valley 3
Reading 1
Schuylkill Valley 4
Tulpenhocken 4
Twin Valley 3
Wyomissing 2
Wilson 3
Blair
Tyrone 3
Bellwood-Antis 4
Altoona 1
Williamsburg 4
Hollidaysburg 3
Claysburg-Kinmel 4
Spring Cove 3
Bradford
Towanda 4
North East Bradford 4
Wyalusing 4
Canton42
Troy 4
Athens 3
Sayre 4
Palisades 4
Quakertown 4Pennridge4
Central Bucks 3
Council Rock 3
Centennial 3
Neshaminy 3
Pennsbury 3
Morrisville 3
Bristol Twp. 3
Bristol Boro. 3
Bensalem 3
New Hope-Solebury 4
Butler
Slippery Rock 3
Moniteau 4
Butler Area 2
Southwest Butler 3
Mars 4
South Butler 3
Karns 4
Cambria
Northern Cambria 4
Cambria Heights 3
Penn-Cambria 3
Portage Area 3
Forest Hills 3
Blacklick 4
Conemaugh Valley 3
Richland 3
Ferndale 3
Westmont Hilltop 3
Central Cambria 3
Greater Johnstown 1
Cameron
Cameron County 4
Carbon
Palmerton 4
Lehighton 3

Carbon (contd.)

Jim Thorpe 4
Panther Valley 4
Weatherly 4
Centre
Bald Eagle 3
Bellefonte 3
State College 3
Penns Valley 4
Chester
Owen J. Roberts 3
Oxford 3
Phoenixville 3
Downingt own 3
Coatesville 3
Octorara 3
Tredyffrin-Easttown 3
West Chester 3
Unionville-Chadds 3
Kennett 3
Avon-Grove 3
Great Valley 3
Clarion
Allegheny-Clarion 4
Clarion 4
Clarion-Limestone 4
Keystone 4
North Clarion 4
Redbank Valley 4
Onion 4
Clearfield
West Branch 4
Moshannon 4
Harmony 4
DuBois 3
Curwensville 4
Clearfield 3
Philipsburg-Osceola 3
Glendale 4Clinton
Keystone 4

Columbia

Benton Area 4
Berwick 3
Bloomsburg 3
Central Columbia 4
Millville 4
Southern Columbia 4
Crawford

Cambridge	4
Cochranton	4
Conneaut Lake	4
Conneaut Valley	4
Linesvi.lle-Conneaut	4
Meadville	3
Randolph-East Mead	4
Saegertown Jt.	4
Sparta Merged	4
Townville	4

Cumberland
Big Spring 3
Camp Hill 3
Carlisle Area 3
Cumberland Valley 3
East Pennsboro 3
Mechanicsburg 3
Shippensburg Area 3
South Middletion 3
West Shore 3
Dauphin
Upper Dauphin 3
Millersburg Area 3
Middletown Area 3
Central Dauphin 3
Lower Dauphin 3
Steelton-Highspire 3
Halifax-Area 3
Susquehanna Twp. 3
Derry Twp. 3
Harrisburg 1
Delaware
Radnor Twp. 2
Haverford 2
Ridley 2
Springfield 2
Marple Newt own 2
Rose Tree Media 2
Chester City 1
Chichester 2
Chester Twp. 2
Garnet Valley 2
Clifton Heights Boro. 2
Collingdale Boro 2
Darby Colwyn 2
Darby Twp. 2
Folcroft Boro. 2
Int erboro 2
Lansdowne Aldan 2
Nether Providence Twp. 2
Penn Delco Union 2
Sharon Hill Boro. 2
Swarthmore-Rutledge Union 2
Upland Boro. 2
Upper Darby Twp. 2
Yeadon Boro. 2
E1k
Johnsonburg Area 4
Ridgway Area 4
St. Mary's Area 4
Erie
Erie City 1
Millcreek Twp. 2
Fairview 3
Northwestern 4
General McLane 3
Fort LeBoeuf 3
Union City Area 3
Corry Area 3
Wattsburg Area 4
North East 4
Harbor Creek 3
Iroquois 2
Girard 3
Fayette
Albert Gallatin 3

Payette (contd.)

Frazier 4
Brownsville Area 3
(Fonnellsville Area 3
Laurel Highlands 3
Uniontown Area 3
Forest
Forest Area 4
Franklin
Chambersburg Area 3
Waynesboro Area 3
Tuscarora 4
Greencastle-Antrim 4
Fannett Metal
Fulton
Southern Fulton 4
Central Fulton 4
Forbes Road 4
Greene
West Greene 4
Central Greene 3
Jefferson-Morgan 4
Carmichaels Area 4
Southeastern Greene 4
Huntingdon
Juniata Valley 4
Huntingdon Area 3
Mount Union Area 4
Southern Huntingdon County 4
Indiana
United 4
Blairsville-Saltsburg 3
Homer Center 4
Penns Manor Area 4
Indiana Area 3
Purchase Line 4
Marion Center 4
Jefferson
Brockway Area4Brookville Area3
Punxsutawney Area 3
Juniata
Juniata County
Lackawanna
Scranton City
Va lley View 33
Abington Heights 3
Carbondale Area 3
Dunmore Boro.
Mid Valley 3
Riverside 3
Lakeland4
North Pocono 3
0ld Forge
Lancaster
Cocalico Union 3
Columbia Boro. 3
Conestoga Valley 3
Donegal 3
Eastern Lancaster 3
Elizabethtown 4Ephrata Area
Hempfield3
Lampeter-Strasburg 1Lancaster
Manheim Central 3
Manheim Twp. 3Penn Manor AreaPequea Valley
4Solanco3Warwick
Lawrence
Ellwood City Area3
Laurel
Mohawk AreaNeshannock Twp.New Castle Area4342
Lawrence (contd.)
Shenango Area 4
Union Area 4
Wilmington Area 3
Lebanon
Palnyra Area 3
Annville-Cleona 3
Cornwall-Iebanon 3
Eastern Lebanon 3
Northern Lebanon 3
Lebanon 3
Lehigh
Allent own City 1
Catasauqua Area 3
East Penn 2
Northern Lehigh 3
Northwestern Lehigh 4
Parkland 3
Salisbury Twp. 3
Southern Lehigh 3
Whitehall-Coplay 3
Luzerne
Northwest Area 4
Ashley-Sugar Notch Jt. 4
Lake-Lehman 4
Bear Creek 4
Dallas 4
Wyoming Area 3
Pittst on Area 3
Wyoming Valley West 3
Crestwood 3
Greater Nanticoke 3
Hazlet on 1
Hanover Twp. 2
Plains Twp. 3
Wilkes-Barre City 1
Wilkes-Barre Twp. 2
Lycoming
East Iycoming 4
Muncy 4
Montgomery Area 4

Lycoming (contd.)

Montoursville Area
 3

South Williamsport 3
Williamsport Area 2
Jersey Shore 3
Loyalsock 3
McKean
Bradford Area 3
Otto-Eldred 4
Port AlleghenySmethport AreaKane Area
Mercer
Jamestown Area 4Commodore Perry
Mercer Area 3
Greenville Area 3
West Middlesex 4
Grove City Area 3
Lakeview 4
Sharon City 3
Hickory Twp. 3
Reynolds 4
Sharpsville Area 4
Farrell Area 3
Mifflin
Mifflin County 4
Monroe
Pleasant Valley 4
Pocono Mountain 3
East Stroudsburg 3
Stroudsburg Area 3
Montgomery
Upper Moreland 3
Lower Moreland 2
Abington 2
Jenkintown 3
Cheltenham 3
Springfield 2
Lower Merion 2
Montgomery (contd.)
Colonial 3
Wissahickon 3
Upper Dublin 3
Hatboro-Horsham 3
North Penn 3
Methacton 3
Norristown Area 3
Upper Merion 3
Spring-Ford 3
Souderton Area 3
Upper Perkiomen 3
Pottstown 2
Pottsgrove 3
Perkiomen 3
Montour
Danville Area 4
Northampton
Bangor Area 3
Pen Argyl Area 3
Nazareth Area 3
Northampton Area 3
East on Area 1
Wilson Area 3
Saucon Valley 2
Bethlehem 1
Northumberland
Warrior Run 4
Milt on Area 3
Shikellaniy 3
Line Mountain 4
Shamokin Area 3
Mount Carmel 3
Perry
West Perry 4
Susquenita 4
Newport4
Greenwood 4
Philadelphia
Philadelphia 1

Pike

Delaware
4

Potter

Oswayo Valley 4
Northern Potter 4
Coudersport Area 4
Galeton Area 4
Austin Area 4
Schnyikill
Pine Grove 4
Williams Valley 4
Tri-Valley 4
Blue Mountain
Schuylkill Haven 4
-4
Minersville Area 3
Pottsville Area 3
Saint Clair Area 4
North Schuylkill 3
Shenandoah 3
Mahanoy Area 3
Tamaqua 3
Snyder
Midd-West 4
Selinsgrove 4
Somerset
Berlin 4
Conemaugh 3
North Star 4
Meyersdale 4
Rockwood 4
Salisbury-Elk Lick 4
Shade-Central City 4
Shanksville 4
Somerset Area 3
Turkeyfoot Valley 4
Windber Area 3
Sullivan
Sullivan County 4
Susquehanna
Blue Ridge 4
Elk Lake4
Forest City 4
Montrose Area 4
Mountain View 4
Susquehanna Community 4
Tioga
Northern Tioga 4
Southern Tioga 4
Wellsboro Area 4
Union
Lewisburg Area 3
Mifflinburg Area 3
Venango
Oil City 3
Franklin Area 3
Cranberry 4
Valley Grove 4
Titusville Area 3
Warren
Warren County 4
Washington
Fort Cherry 4
Burgettstown 3
Avella Area 4
McGuffey 4
Canon-McMillan 3
Chartiers-Houston 3
Peters Twp. 3
Trinity Area 4
Washington 3
Ringgold 3
Charleroi Area 3
Bethlehem-Center 3
California Area 3
Bentworth
Wayne
Wayne Highlands 4
Wallenpaupack 4
Western Wayne 4
Westmoreland
Burrell 3
Kiski Area 3
Franklin Regional 3
Derry Area 3
Greater Latrobe 3
Mount Pleasant 3
Iigonier Valley 3
Hempfield 3
Greensburg 3
Yough 3
Monessen City 3
Belle Vernon 3
Jeannette 3
Norwin 3
Penn-Trafford 3
Southmoreland 3
New Kensington-Arnold 3
Wyoming
Tunkhannock 4
Lackawanna 4
York
Central York 3
Dallastown Area 3
Dover Area 3
Eastern York 3
Northeastern York 3
Northern York County 4
Red Lion Area 3
South Eastern 4
Southern York 4
South Western 4
Spring Grove 4
West York 4
York City 1
York Suburban 2
Hanover Boro. 3

APPENDIX B
INTERMEDIATE UNITS

Name

Number
Intermediate Unit 1* 01
Pittsburgh-Mount Oliver 02
Allegheny 03
Midwestern 04
Northwest Tri-County 05
Intermediate Unit 6** 06
Westmoreland 07
Intermediate Unit $8^{k * *}$ 08
Seneca Highlands 09
Central 10
Tuscarora 11
Lincoln 12
Lancaster-Lebanon 13
Berks Ccunty 14
Capital Area 15
Central Susquehanna 16
Blast 17
Luzerne 18
Northeastern Educational 19
Colonial Northampton 20
Carbon Lehigh 21
Bucks County 22
Montgomery County 23
Chester County 24
Delaware County 25
Philadelphia 26
Beaver Valley 27
Arin 28
Schuylkill 29

[^9]

APPENDIX C
INPUT DATA
TABLE 5
population by intermediate unit and type of residence for pennsylvanla 1970

TABLE 6
SURVIVAL RATES BY
TYPE OȦ RESIDENCE, AGES 0-19
VARIABLE: SURV

METROPOLITAN, CENTER CITY	METROPOLITAN, OTHER	SUBURBAN OR SMALL COMMUNITY	RURAL
.9999	.9999	.9999	.9999

TABLE 7

CHANGE IN MILLAGE RATE BY TYPE OF RESIDENCE (1968-69 to 1969-70)

VARIABLE: DELM

METROPOLITAN, CENTER CITY	METROPOLITAN, OTHER	SUBURBAN OR SMALL COMMUNITY	RURAL
11.08%	15.11%	9.77%	2.55%

TABLE 8

DISTRIBUTION OF NONPUBLIC ENROLLMENT OVER FIVE GRADE LEVELS

VARIABLE: WRPN

	PRESCHOOL	KINDERGARTEN	$1-6$	$7-8$	$9-12$
1970	$.00 \%$	1.9%	56.6%	17.3%	24.2%
1980	$.00 \%$	2.1%	52.8%	16.4%	28.7%

TABLE 9

FERTILITY RATES BY TYPE OF RESIDENCE*

VARIABLE: FERT

	METROPOLITAN, CENTER CITY	METROPOLITAN, OTHER	SUBURBAN OR SMALL COMMUNITY	RURAL
	8.22	7.84	7.97	8.72
1980	7.76	7.77	7.73	7.97

[^10]TABLE 10

MIGRATION RATES BY TYPE OF RESIDENCE
 AND INTERMEDIATE UNIT FOR
 TEN YEARS, 1960-1970*
 VARIABLE: PEMIG

Intermediate Unit Number	Type of Residence	Age			
		0-9	10-14	15-19	$\begin{aligned} & \text { Female } \\ & 15-44 \\ & \hline \end{aligned}$
01	03	-. 017	-. 035	-. 086	-. 099
01	04	-. 000	-. 005	-. 011	-. 002
02	01	-. 052	-. 214	-. 077	-. 109
03	02	-. 019	-. 024	-. 030	-. 020
03	03	-. 033	-. 045	-. 055	-. 037
04	02	. 006	-. 008	-. 025	-. 011
04	03	. 003	-. 018	-. 029	-. 023
04	04	. 002	-. 013	-. 023	-. 018
05	01	-. 005	-. 013	-. 005	-. 001
05	02	-. 002	-. 005	-. 002	-. 003
05	03	-. 003	-. 007	-. 003	-. 005
05	04	. 010	. 007	-. 006	-. 015
06	03	-. 012	-. 037	-. 070	-. 069
06	04	-. 006	-. 031	-. 061	-. 022
07	03	. 067	. 040	-. 070	-. 037
08	01	-. 010	-. 016	-. 019	-. 025
08	03	-. 015	-. 021	-. 038	-. 050
08	04	-. 009	-. 010	-. 036	-. 035
09	03	-. 013	-. 026	-. 070	-. 046
09	04	-. 016	-. 046	-. 116	-. 078
10	03	-. 016	-. 048	. 305	. 052
10	04	-. 015	-. 031	. 034	. 024
11	03	-. 001	-. 005	. 000	-. 017
11	04	-. 011	-. 026	-. 088	-. 072
12	01	. 005	. 006	-. 001	. 002
12	02	. 003	. 003	-. 001	. 001
12	03	. 020	. 035	. 016	. 006
12	04	. 011	. 009	. 000	. 007
13	01	. 007	. 008	. 010	. 005
13	03	. 033	. 031	. 036	. 014
13	04	. 007	. 007	. 010	. 005
14	01	. 012	. 017	. 013	. 006
14	02	. 007	. 010	. 008	. 003
14	03	. 019	1027	. 021	. 010
14	C4	. 005	. 007	. 005	. 002
15	01	-. 012	-. 009	-. 015	-. 005
15	03	. 058	. 071	. 126	. 053
15	04	. 001	. 004	. 000	-. 004
16	03	-. 010	-. 016	-. 062	-. 041
16	04	. 002	. 012	. 047	. 014
17	02	. 012	. 006	. 000	. 006
17	03	. 011	. 006	. 005	. 005
17	04	. 007	. 014	. 045	. 022

TABLE 10
(continued)

Intermediate Unit Number	Type of Residence	Age			
		0-9	10-14	15-19	$\begin{aligned} & \text { Female } \\ & 15-44 \end{aligned}$
18	01	. 002	. 008	-. 001	-. 019
18	02	. 000	. 001	. 000	-. 003
18	03	. 002	. 010	-. 002	-. 024
18	04	. 011	. 009	. 001	-. 008
19	01	. 003	. 001	. 002	-. 016
19	03	. 005	. 002	. 002	. 022
19	04	. 005	. 005	-. 022	-. 017
20	01	. 029	. 018	. 042	-. 011
20	02	. 002	. 002	. 004	-. 001
20	04	. 011	. 015	. 008	. 007
21	01	. 019	. 023	. 011	. 015
21	02	. 006	. 007	. 003	. 004
21	03	. 019	. 020	. 003	-. 017
21	04	. 003	-. 001	-. 013	. 007
22	03	. 173	. 135	. 003	. 117
22	04	. 031	. 024	. 000	. 021
23	02	. 099	. 134	. 058	. 510
23	03	. 038	. 052	. 022	. 199
24	03	. 117	. 266	. 251	. 172
25	01	-. 001	-. 001	-. 003	-. 001
25	02	-. 011	-. 005	. 027	-. 012
26	01	-. 141	-. 113	. 063	-. 030
27	02	-. 001	-. 003	-. 006	-. 005
27	03	-. 010	-. 046	-. 082	-. 075
27	04	. 001	. 003	. 005	. 004
28	03	. 014	-. 040	. 021	-. 054
28	04	-. 001	-. 005	. 080	. 010
29	03	-. 010	-. 017	-. 067	-. 065
29	04	-. 008	-. 014	-. 053	-. 051

*Assumed the same for 1970-1980.

**Per cent of age group in school in a specific grade

TABLE 12
SPECIAL EDUCATION RATIOS*
VARIABLE:

1-6 7-8 9-12
응
.0290 .0020 .0020
.0550 .0030 .0030
0
0
0
0
0
0
0
0
0
0
0
0

Educable		
$\underline{1-6}$	$\underline{7-8}$	$\underline{9-12}$
.0100	.0140	.0140
.0040	.0050	.0050
.0080	.0100	.0100
.0150	.0120	.0120

[^11]64
**1 = Metropolitan--Center City, $2=$ Metropolitan--Other, $3=$ Suburban or small community, $4=$ Rural
Fo 3ueo jod
\[

$$
\begin{aligned}
& \text { Per cent of } \\
& \text { otal Enrollment } \quad \text { Type of }
\end{aligned}
$$
\]

VARIABLE: RNP
VARIABLE: RNP

TABLE 14
RATIO OF 1980 NONPUBLIC ENROLLMENT TO 1970 NONPUBLIC ENROLLMENT BY TYPE OF RESIDENCE*

VARIABLE: TPEN

Metropolitan--Center City: 1980 nonpublic enrollment will be . 384 of what it was in 1970.

Metropolitan--Other: 1980 nonpublic enrollment will be .332 of what it was in 1970.

Suburban or small community: 1980 nonpublic enrollment will be .332 of what it was in 1970.

Rural: 1980 nonpublic enrollment will be 309 of what it was in 1970.
*As developed by the University of Notre Dame for the President's Commission on School Finance.

TABLE 15
Nubber or teachers and mean salary NUMBER OF TEACHERS AND MRAN SALARY
BY SIX AGE CLASSIFICATIONS FOR
TYPE OF RESIDENCE WITHIN INTERMEDIATE UNIT
(Sample Deta)
VARIABLES: FETS SAL

$\$ 09888$

옹 (20ำ

Type of Reaidence*	Inter. Unit	Leas ringi 25		25-29		30-39		40-49	
		No.	SaI.	No.	Sri.	No.	Sal.	No.	Say.
3	01	003.94	\$06615	00630	\$07327	00491	\$08704	00404	\$09476
4	01	06:119	06649	00224	07599	00171	08876	00162	09661
1	02	00422	07402	-00957	08495	00596	10335	00.529	11222
2	03	00273	07123	00619	07919	00368	09446	00327	10231
3	03	01077	07157	02563	08210	01531	09902	01051	ic745
2	04	00109	07052	002.41	07895	00166	09353	00139	10232
3	0 O	00194	05857	00355	07756	00360	09377	00316	09875
4	04	00122	05818	00239	07695	00223	09050	00160	09714
1	05	00035	07529	00172	08490	00148	09825	00169	10610
2	05	00064	07003	00125	07727	00100	09060	00067	10186
3	05	00115	06722	00220	07400	00197	08528	00188	09467
4	05	00162	06549	00295	07357	00271	08673	00180	09380

TABLE 16

PUPIL-TEACHER RATIOS

VARIABLE: PUさ'CH

Intermediate Unit	Type of Residence*	1970	1980**
1	3	22.7	20.4
1	4	23.4	21.0
2	1	21.1	18.9
3	2	20.7	18.6
3	3	22.7	20.4
4	2	23.5	21.1
4	3	22.9	20.6
4	4	22.9	20.6
5	1	24.1	21.6
5	2	24.5	22.0
5	3	23.4	21.0
5	4	23.4	21.0
6	3	23.3	20.9
6	4	22.5	20.2
7	3	23.9	21.5
8	1	22.6	20.3
8	3	24.0	21.5
8	4	22.9	20.6
9	3	19.5	17.5
9	4	23.5	21.1
10	3	23.6	21.2
10	4	23.3	20.9
11	3	21.5	19.3
11	4	23.6	21.2
12	1	18.9	17.0
12	2	19.6	17.6
12	3	22.8	20.5
12	4	23.4	21.0
13	1	18.1	16.2
13	3	22.3	20.0
13	4	21.3	19.1
14	1	21.4	19.2
14	2	19.4	17.4
14	3	22. 7	20.4
14	4	24.0	21.5
15	1	19.7	17.7
15	3	21.5	19.3
15	4	21.6	19.4
16	3	24.1	21.6
16	4	23.7	21.3
17	2	24.4	21.9
17	3	23.3	20.9
17	4	22.6	20.3

TABLE 16
(Continued)

Intermediate Unit	Type of Residence*	1970	1980**
18	1	22.0	19.7
18	2	25.2	22.6
18	3	23.4	21.0
18	4	23.4	21.0
19	1	21.7	19.5
19	3	23.0	20.6
19	4	22.8	20.5
20	1	23.0	20.6
20	2	23.5	21.1
20	3	22.8	$2 \backslash .5$
20	4	21.3	19.1
21	1	23.1	20.7
21	2	23.1	20.7
21	3	23.3	20.9
21	4	22.4	20.1
22	3	21.5	19.3
22	4	22.2	19.9
23	2	21.3	19.1
23	3	20.5	18.4
24	3	20.0	17.9
25	1	21.2	19.0
25	2	21.7	19.5
26	1	21.5	19.3
27	2	21.7	19.5
27	3	24.4	21.9
27	4	24.3	21.8
28	3	22.1	19.8
28	4	23.4	21.0
29	3	23.3	20.9
29	4	23.2	20.8

[^12]TABLE 17
WITHDRAWALS FROM TEACHING*
VARIABLE NAME: WDRAWS

Type of** Residence	Withdrawal*** Code	Age Classification					
		Less than 25	25-29	30-39	40-49	50-59	$\begin{gathered} \text { Greater } \\ \text { than } \\ 59 \end{gathered}$
1	1	. 3518	. 0875	. 0420	. 0116	. 0064	. 2513
1	2	. 1119	. 0359	. 0131	. 0043	. 0071	. 0069
2	1	. 2700	. 1291	. 0563	. 0151	. 0066	. 2626
2	2	. 1202	. 1004	. 0293	. 0090	. 0084	. 0027
3	1	. 2058	. 1030	. 0508	. 0106	. 0056	. 2562
3	2	. 1065	. 0915	. 0310	. 0074	. 0052	. 0028
4	1	. 2228	. 1198	. 0445	. 0199	. 0071	. 2592
4	2	. 1032	. 0730	. 0163	. 0078	. 0047	. 0029

*Ratio of number age group withdrawing to total number in age group.
**1 $=$ Metropolitan--Center City, $2=$ Metropolitan--Other, $3=$ Suburban or small community, 4 = Rural
***2 $=$ Left: teaching permanently because of:
Not suited for teaching
Unsatisfactory teaching conditions
Death
Illness
Maternity
Moving due to husband's transfer
$1=$ All other reasons for withdrawal
an.

TABLE 18

HIRING RATES*

VARIABLE NAME: HR

Type of Residence	Age Classification					
	Less than 25	25-29	30-39	40-49	50-59	$\begin{gathered} \text { Greater } \\ \text { than } \\ 59 \\ \hline \end{gathered}$
Metropolitan Center City	. 3332	. 2342	. 1229	. 1129	. 0828	. 1136
Metropolitan Other	. 4894	. 3279	. 1076	. 0583	. 0125	. 0040
Suburban or Small Community	. 5487	. 2627	. 1145	. 0570	. 0138	. 0029
Rural	. 5716	. 2313	. 1236	. 0520	. 0173	. 0040

*Ratio of teachers hired into a specific age classification to all teachers hired.

ERIC

TABLE 20
TRANSPORTATION DATA (Selected Data)

Type of Residence*	Intermediate Unit	Ratio of Number Transported to Total Students	Cost Per Pupi1
3	01	0.741	
4	01	0.894	$\$ 048.00$
1	02	0.186	061.97
2	03	0.302	064.92
3	03	0.660	058.01
2	04	0.529	042.59
3	04	0.667	064.27
4	04	0.859	056.72
1	05	0.104	051.38
2	05	0.561	099.18

*1 $=$ Metropolitan--Center City, $2=$ Metropolitan--Other, 3 = Suburban or small community, $4=$ Rural

$$
\because r
$$

TABLE 21

SCHOOL BUILDING COSTS
(Selected Data)

TABLE 22
SPECIAL EDUCATION COSTS*
VARIABLE: SCOST
1969-70
CATEGORY PER PUPIL COST
Educable--Mentally Retarded $\quad \$ 850$
Trainable--Mentally Retarded 1,461
Physically Handicapped 2,300
Socially and Emotionally Disturbed 2,188
Gifted 875
Itinerant 130 (Weighted mean)
*Special Education Programs for Exceptional Children 1968-69. (Bureau of Special Education, Pennsylvania Department of Education, 1970), p. 9.

TABLE 23

DENSITY/SPARSITY AND TOTAL PAYMENTS MINUS DENSITY/SPARSITY PER WADM BY INTERMEDIATE UNIT AND TYPE OF RESIDENCE
 (Sample Data)

VARIABLE: PERSP

Intermediate Unit	Type of Residence*	Density/ Sparsity Per WADM	Total Dayment Minus Density/ Sparsity Per WADM
01	3	$\$ 000.00$	
01	4	012.97	$\$ 369.23$
02	1	104.24	336.99
03	2	109.86	152.45
03	3	003.14	130.33
04	2	000.00	239.20
04	3	087.55	318.28
04	4	187.39	228.82
05	1	000.00	177.54
05	2	000.00	264.16
05	3	000.00	220.98
05	4	267.51	331.88

[^13]TABIE 24
PER CENT OF FEDERAL REVENUE TO TOTAL REVENUE BY TYPE OF RESIDENCE AND INTERMEDIATE UNIT
(Selected Data)

Type of Residence $\boldsymbol{*}$	Intermediate Unit	Per Cent of Federal Revenue
3		
4	1	4.07%
1	1	3.63%
2	2	12.29%
3	3	3.83%
2	4	1.34%
3	4	3.18%
4	4	2.20%
1	5	1.57%
2	5	5.86%
		3.45%

*1 = Metropolitan--Center City, $2=$ Metropolitan--0ther, $3=$ Suburban or small community, $4=$ Rural

TABLE 25

PER CENT OF TOTAL TAXES ACCOUNTED FOR BY TAXES OTHER THAN THE PROPERTY TAX BY TYPE OF RESIDENCE WITHIN INTERMEDIATE LNIT (Selected Data)

Type of Residence*	Intermediate Unit	Perr Cent, 0ther Taxes
3	1	
4	1	33.42%
1	2	27.48%
2	3	42.32%
3	3	16.89%
2	4	18.03%
3	4	30.54%
4	4	31.27%
1	5	38.04%
2	5	23.71%

*1 $=$ Metropolitan--Center City, $2=$ Metropolitan--0ther, $3=$ Suburban or small community, $4=$ Rural

VARIABLE: PERMC

TYPE OF
RESI- INTER. DENCE* UNIT

MARKET VALUE
00,831,539:100 $00,337,084,9: 0$ 02,222,121,700 01,266,616,600 03,717,503,000 00,344,610,500 00,664,842,800 00,307,839,800 00,449,141,300 00,240,730,600 00,210,011,700 $00,24 ?, 512,600$

MILLS ON MARKET VALUE

3	01	$\$$	$00,831,539,100$
4	01	$\$$	$00,337,084,900$
1	02	$\$$	$02,222,121,700$
2	03	$\$$	$01,266,616,600$
3	03	$\$$	$03,717,503,000$
2	04	$\$$	$00,344,610,500$
3	04	$\$$	$00,664,842,800$
4	04	$\$$	$00,307,839,800$
1	05	$\$$	$00,449,141,300$
2	05	$\$$	$00,240,730,600$
3	05	$\$$	$00,210,011,700$
4	05	$\$$	$00,247,512,600$

$\begin{array}{lll}\$ & 0,018,545,444 & 22.3 \\ \$ & 0,007,264,740 & 21.6\end{array}$
$\$ 0,046,536,520 \quad 20.9$
$\$ \quad 0,027,101,449$
21.4
$\$ 0,094,719,751 \quad 25.5$
$\$ \quad 0,007,615,772$
22.1
$\$ \quad 0,015,287,606$
23.0

0,007,218, 336
23.4
$0,009,359,188$
20.8
$0,005,522,316 \quad 22.9$
0,007,343, 785
35.0
33.8

[^14]$$
2
$$

PROJECTED RECEIPTS FROM INCOME TAX* FOR PENNSYLVANIA

$1971-72$	$\$$$770,000,000$ $1972-73$
$1973-74$	$1,040,000,000$
$1974-75$	$1,100,000,000$
$1975-76$	$1,170,000,000$
$1976-77$	$1,240,000,000$
$1977-78$	$1,320,000,000$

1971-72
1972-73
1973-74
$74-/ 5$

1976-77
1977-78

$$
\begin{array}{r}
770,000,000 \\
990,000,000 \\
1,040,000,000 \\
1,100,000,000 \\
1,170,000,000 \\
1,240,000,000 \\
1,320,000,000
\end{array}
$$

*Supplied by the Department of Revenue, Commonwealth of Pennsylvania

TABLE 28
PERSONAL INCOME BY RESIDENCE (Selected Data)

Intermediate
Unit

Type of
Residence*
3
4
1
2
3
2
3
4
1

1970
Personal Incorie by Residence
\$112, 989,000
38, 245,000
243,896,000
138,515,000
432,859,000
39,868,000
78,586,000
42,038,000
60,347,000

[^15]$1+3$

TABLE 29
ELASTICITY FACTORS FOR PERSONAL INCOME BY RESIDENCE AND MARKET VALUE*

VARIABLE: PEREF

Intermediate Unit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 18
19
20
21
22
23
24
25
26
27
27
28
29

Elasticity Factor
.369
-. 106
2.398
. 581
.383
.400
.233
.244
.296
1.141
1.140
1.098
1.056
.365
.333
-. 129
.682
1.121
.567
.769
.418
.794
-. 374
1.161
. 283
.239
.157
.393
.396
*For every increase in personal income by residence there is a .369 increase in market value in Intermediate Unit 1.

TABLE 30

MISCELLANEOUS VARIABLES

Inflation Factor: 020
Real Increase in Teachers' Salaries: 05
Increase in Mothers by Year: 10133
-74-

APPENDIX D

SAMPLE OF OUTPUT FORMAT
SAMPLE PAGE OF PRINT-OUT

00000
00000
0000000
0000000

IU: \#34
POPULATIGN:

00000 AGE GROUP 41

0000000

0-4: 0000000

5-9:
00000 AGE GROUP 3:

00000 00000 AGE GROUP 6:

APPENDIX E
PROGRAM

```
//SBSPEMO! JOB (VEN1,243,R,6,10,.,.,G),LAWRFNCE.
//SBSSTEP, EXEC FORCMPG,REGION=15CK
//COMP.SYJIN DD *
C****PEN!:SLYVANIA EDUCATION PLANNING MODEL
C SPECIFICATION SECTOR
DIMENSION POP(21,4,29),ENRAT (20,14),RESMIG (4,4,29,2),IPOP(5),
XERMTS (6),RNP(4,29, 2),CM (5),SURV(4),FT(4),IG(21).
XPART (20,2), PTR(20),CHR(5),WRNP (5, 2),PNROL (6),NG(10),IGR(15),
XSER (5,6,4), SENUM (7,6),TPEN (4), IPNRL (6),NX2 (20),
XPUTE(2), PUTCH (4,29,2),ISPD (7,6),IRHTS (6), DELM(4) .
XWDRAWS (6, 2, 4), FENSS (6,4, 29), PRO{iO(7),HR(6,4),SCOST(6),
XBAB (21),SAL (6,4,29), PR (6), IA (4,29),FERT (4, 2), PCFED (4, 29).
XR(2,3,4,29), ALPHA (6, 34),ASN (7,7), IFETS (6), SPPAY(4, 29),OSPAY (4, 29),
X_RMT (6,6), PPNRL (6,6), PSNUM (6,7,6), PFETS (6,6), APOP (6,5).
XTCOSr (6, 20), 先TS (20), ACOST (8,20), ALPH1 (3), TRAT (4, 29), TRCT (4,29),
XICOSI (20), DATE(3),IDATC (3), TROLT (6),TTETS (6),TSALP (6).
XICL (3),TMIL (4, 29), PI (4, 29, 2), BMV (4, 29), EF (29),OLRAT (4, 29) .
XAXE1(5),AXE2 (5), PERMT(5), PPRMT (6,6), IPRMT (6), PCOST (19), PCTC (19),
XBLD(2,8,4,29),ADIST (8),AGBLD(9),TBLC(2), XNWBLD(2), COPB(2,4).
XBLDT (ú, 8), IBLD(8), SROL (2), XBCOST (2,4,29),TOBDC (6)
    EQUIVALENCE (TADMX,COSTS (1)).(TIX,CCSTS(2)), (EPX,COSTS(3)),
    2(SICK,COSTS (4)),(TCTS,COSTS(5)),(OMX,COSTS(6)),(FCX,COSTS (7)).
    ( (FCODX,COSTS (8)).(SACTX,COSTS (9)),(CCNMX,COSTS(10)).
    4(CUEXP,COSTS(11)).(CAPEX,COSTS(12)).(DEBTS,COSTS (13)).
    5(TOTEX,COSTS (14)).(PRTAX,CoSTS (15)),(CLREV,COSTS(i6)),
    6(STFJS,COSTS (17)),(FEDPDS,COSTS (18)).(TOTREV,COSTS!19))
C
C****STATEMENT FUNCTION TO LINEARLY INTEREOLATE KATES
C****REF 1
    FUNC(X1,X2,TT,T, DT)}=(X1+TL*(X2-X1)/TT)*DT
C
C****INPUT SECTOR
C
```

 DATA ANT, PROMO (1), SER,AGBLD(1), ZLDT/1., 0., 169*0./
 DATA IA,IG/116*0,9*1,6*2,5*3,4/
 DATA NG/1,5,6,10,11,15,16,20,1,20/
 DATA IGR, IST/0, 1, 2, 6*3,2*4, 4*5, 1/
 DATA APOP/30*0./
 DATA SER, PR/ \(120 * 0 . \ldots 3, .2, .1, .1,1,0.1\)
 DATA TRMT, PPNRL, PSNÜM, PFETS,TCOST,TSALF,PPRMT/522*0./
 DATA ALPH1/'AGE',' GR', 'OUR'/
 DATA CAPEX, DEBTS, TOTEX,TROLT,TTETS/15*0./
 DATA DATE, IDATE/'JUN', 'E '.' ', 1972.1576,1980/
 DATA ICL (1), ICL (2), TOBDC, XBCOS' \(/ 6,5,238 * 0 . /\)
 C AXE $1=W E I G H T I N G$ FACTOR FOR CALCULATING PUPIS UTILIZATION OF RESOURCES
C AXE2=STATE STATUTORY WEIGHTING FACTORS
DATA AXE1, AXE2/.5c.5,1.,1., i., 0.,.5,1., 1., 1.36/
N=NIMBEK OF TIMES PER YEAR INCREMENTING OCCURS
IYEARS=TOTAL NUMBER OF YEARS MODEL PEECICTS
NSE = NUMBER OF SPECIAL EDUCATION OUTPUTS
READ $(1,5)$ N, IYEARS,NSE
C NX $=$ NUMBER OF TIMES OUTPUT IS PRINTED
C NX2=INCREMENTING PERIOD IN WHÏCH OUTEUT IS PRINTED
READ (1, 195) NX1, (NX2(I), $\mathrm{I}=1$, NX1)
C XINF=RATE OF INFLATION
C XNSAL= KEAL INCREASE IN TEACHER'S SALARY
READ $(1,225)$ XINF,XNSAL
C SCOST= ZOST PER PUPIL OF VARIOUS SPECIAL ED PROGRAMS
READ (1, 255) (SCOST (I), I=1, 6)
© DELM=?NNUL RATE OF CHANGE OF MILLAGE BY TYPE OF RESIDENCE
-78-
$\operatorname{KEAD}(1,15)(\operatorname{DELM}(I), I=1,4)$
fert=fertility rates by type of kesidence for 1970/1980
bead 1,15) FERT
SURV=SURVIVAL RATES BY TYEE OF RESIDENCE
READ $(1,15)$ SURV
GM=anNuAL Rate of change of number of gCmen $15 / 44$
READ $(1,15)$ GM
TPEN=RATIO OF 1980 NON-PUBLIC ENROLLMEAT TO 1970'S
READ $(1,155)$ TEEN
WRNP=DISTRI BUTTON OF NON-PUBLIC ENROLLMENT OVER GRADE LEVELS
READ $(1,155)$ HENP
alphanames of residence categories, intermediate units and state
READ $(1,65)$ ((ALPHA ($\mathrm{I}, \mathrm{J}), \mathrm{I}=1,6), \mathrm{J}=1,34$)
SER=RATIO OF SPECIAL ED PUPILS BY PROGRAM AND TYPE RESIDENCE TO
public endollment
$\operatorname{READ}(1,75)(((\operatorname{SER}(I, J, \eta), I=3,5), J=1,6), M=1,4)$
ASN=NAMES OF SPECIAL ED PROGRMMS
$\operatorname{READ}(1,85)((\operatorname{ASN}(1, J), I=1,7), \mathrm{J}=1,7)$
ACOST=NAMES OF VARIOUS EXPENDITURE/REVENUE CATEGORIES
$\operatorname{AEAD}(1,145)((\operatorname{ACOST}(I, J), I=1,8), J=1,19$)
adist ratio of buildings to be replaced in each age group
READ 1,265) ADIST
building costs per pupil by type of résidence
REA D 1,275) COPB
POP=INITIAL POPULATION BY BASIC UNIT POR SINGLE YEARS OF AGE 0-19
AND FOR WCMEN $15 / 44$
READ $(2,25)(I, J,(P O P(I A G E, J, I)$, IAGE $=1,21)$, $N N=1,73)$
RESMIG=MIGRATION RATES FOR AGE GROUPINGS FOR EACH BASIC UNIT $1970 / 1980$
READ (2,35) (I,J, ((RESHIG (KP,J,I,M),KP=1,4), M=1,2),NN=1,73)
PART $=$ SCHOOL-AGE PARTICIPATION RATES FOR $1970 / 1980$
EnRat=enrollment rates by ige and grade
READ $(2,45)((\operatorname{PART}(I, M), M=1,2),(\operatorname{ENRAT}(I, J), J=1,14), I=4,20)$
DO $10 \mathrm{NN}=1.73$
FOR EACH BASIC UNIT:
trat=ratio of purils transportej to total enrollment
TRCT =TKANSPORTATION COST PER PUPIL
RNP=RATIO OF NON-PUBLIC ENROLLMENT TO TOTAL ENROLLMET
$\operatorname{READ}(2,55) \mathrm{I}, \mathrm{J}, \operatorname{TRAT}(\mathrm{I}, \mathrm{J}), \mathrm{TRCT}(\mathrm{I}, \mathrm{J}), \operatorname{RNP}(\mathrm{I}, \mathrm{J}, 1)$
$\operatorname{RNP}(\mathrm{I}, \mathrm{J}, 2)=\operatorname{RNP}(\mathrm{I}, \mathrm{J}, 1) * \operatorname{TPEN}(\mathrm{I})$
10 IA $(\mathrm{I}, \mathrm{J})=1$
hr=Rati of an teacher's age group hirings to total hirings
READ $(2,95)$ HR
WDRA ${ }^{\prime}$ S = PROPORTION OF TEACHERS WITHDRAWING FROM AN aGE-CATEGORY
READ $(2,105)$ WURAWS
Putchi pupil teacher ratio for each basic unit 1970/1980
$\operatorname{READ}(2,115)$ (I, J, (PUTCH (J, I, IM) , IM $=1,2$) , $N N=1,73$)
FOR EACll BASIC UNTT:
FETS=INITIAL NUMBER OF TEACHER'S FOR EACH AGE-CATEGORY
SAL=AVERAGE SALARY FOR teachers by each age-category
READ (2, 125) (I, J, (FETS (IM, I, J), SAL (IM, I, J), IM=1, 6) , NN=1, 73)
R(4,.... = batio of federal program admin costs to total federal funds
R(5,.....=Ratio of SUPERVISORS' SALARIES TO TEACHERS' SALARIES
r $6, \ldots . .=$ ratio of other instructional costs to teachers' salabies
R(7,.....=RatIo of SECRETARIAI SALARIES TO TEACHERS' SALARTES
Ri8,.....=ratio of other instruction costs to teachers' salabies
R(1,..... $=$ ratio of admin salaries to total insructional costs
R(3,..... $=$ RATIO OF Other admin Costs to total admte salaries
R(9...... $=$ ratio of pupil personnel costs to total instructional costs
r (10,..... =Ratio of operations and maitenance costs to
total insructional costs
r(12,..... $=$ RATIO OF FIXED COSTS to total INSTRUCTIONAL COSTS

```
C M(i.,....=RATIO OF FOOD SERVICES COSTS TO TOTAL INSTRUCTLONAL COST
C i (14,....=RATIO OF STUDENT ACTIVITY COSTS TO TOTAL INSTUCTIONAL COST
C
C
    R(15\ldots....=RATIO OF COMMUNIT: SERVICES COSTS TO TOTAL INSTRUCTIONAL COSTS
    R(17.....=RATIO OP HEALTK SEQVICES CCSTS TO TOTAL INSTRUCTIONAL COSTS
        READ (2,135)(I,J,(R(IM, I,J), ,M=1,21;,NN=1,73)
    R(22..... =RATIO OF CAPITAL EXPENDITURE TO CURRENT EXPENDITURE
    R(23.....=RATIO OF DEBT. SERVICE TO CURRENT EXPENDITURE
        READ (2,165)(I,J, R (22,J,I),R(23,J,I):NN=1,73)
    PCFED=RATIO OF FEDERAL FUNDS TO STATE AND LOCAL FUNDS
    OLRAT=hATIO OF OTHER LOCAL REVENUE TO TOTAL LOCAL REVENUE
        READ (2,175) (I,J, PCFFD (I,J),OLRAT (I,J) ,NN=1,73)
    SPPAY=DENSITY/SPARCITY PAYMENTS PEE WADM
    OSPAY=TOTAL OTHER STATE PAYMENTS PER WADM
        GEAD (2,185)(J,I,SPPAY(I,J),OSPAY (I,J),NN=1,73)
    BMV=BASE MARKET VALUE
    TMIL=MILLS ON MARKET VALJE(1970)
        READ (2, 215) (I,J,BMV (I,J),TMIL(I,J) ,NN=1,73)
    EF=ELASTICITY FACTOR
        READ (2,235) (EF(I), I=1,29)
    PI=PERSONAL INCOME BY RESIDENCE (1970/1980)
        READ (2,245) (I,J, (PI (J,I,K),K=1,2),NN=1,73)
        BLD=PUPIL CAPACITY OF BUILDINGS BY EACH AGE GROUP FOR EACH BASIC UNIT
        READ(2,285)(IR,IU,((BLD(I,J,IR,IU),I=1,2),J=1,8),NN=1,73)
    5 FORMAT (3I2)
    15 FORMAT (2X,4F5.4)
    25 FORMAT(I2,I1,20F6.0,F7.0)
    35 FORMAT (I2,I 1, 2X,4F6.4/5X,4F6.4)
    45 FORMAT (4X,16E3.3)
    55 FORMAT (I 1, I 2,F4, 3,F5.2,8X,F4.3)
    65 FORMAT (6A4)
    75 FORMAT (1X,18F4.4)
    85 FORMAT (7A4)
    95 FORMAT (6(1X,F4.4))
    105 FORMAT (2X,6F4.4)
    115 FORMAT(2I2, 2F5.1)
    125 FORMAT (I 1,I 2, 12F5.0)
    135 FORMAT(I1,I 2,21F6.4)
    145 FORMAT (8A4)
    155 FORMAT (5F4.3)
    165 FORMAT (I2,I 1,2F5.4)
    175 FORMA'I(I 1,I2,F4,4,F5.4)
    185 FORMAT (I 2,I 1, 1X,2F5.2)
    195 FORMAT (2OI 2)
    205 FORMAT (2F4.3)
    215 FORMAT (I 1,I 2, )P1F11.0,10X,1P1F3.3)
    225 FORMAT (2F5.3)
    235 FOAMAT {2X,F8,3)
    245 FORMAT(I2,I1,2F9.0)
    255 FORMAT (ÓF4.0)
    265 FORMAT(8F4.3)
    275 FORMAT (8F4.0)
    285 FORMAT (I 1,I 2, 16F6.0)
    505 FORMA:(/'' POPULATION:',T25,'0-4:',I8, 2X,'5-9:',I8, 2X,'10-14:',
    2I8, 2X, '15-19:',I8, 2 X,' TOTAL:',I8/)
    515 FORMA'I(' TOTAL ENROLLMENT:',T25,6I 12)
    525 FORMAT(' NON-PUBLIC ENROLLMENT:',T25,6I12)
    535 FORMAT ('1','IU: #',I2,T40,6A4, 3X,3A3,I5/)
    545 FORMAI(' '.7A4.I7.5I12)
    555 FORMAT(/' PUPIL-TEACHER RATIO:....'',F4. 1)
        $%
    565 FORMAT(' TEACHERS FMPLOYED:',T22,6(3A3,I2,: :',I5,1X))
    575 FORMAT(' TOTAL TEACHERS'' SALARY($''000):', 3X,I9//)
```

```
    585 FORMA''(' EXPENDITURE SUMMARY')
    595 FORMMT(' ',8A4,':',4X,I 9,11X,F10.2,11X,F5.1)
    605 FO.: SAI'(' ENRCLLMENT DATA',T32,' PRE-K',T44, 'KIND'.
    2T57,'1-6'.T69,'7-8',T81,'9-12',T92,'TOTAL')
    615 FORMAT(I/' REVENUE SUMMARY')
    625 FORMAT(' ',T41,'($'000)'.T59.'($-PER-PUPIL)',T80,'(PCT)')
    635 FORMAT(//' SURPLUS/DEFICIT',T34,':',4X,I9)
```



```
    6 5 5 ~ F O R M A T ( / / ' ' ~ S C H O O L ~ B U I L D I N G ~ C A P A C I T Y : ' . ~ 2 X , 8 ( 3 A 3 , I 2 , 2 X ) ) ~
    665 FORMAT(' PUPIL STATIONS:', 12X, 8(I8,5X))
    675 FORMAT(/' TCTAL BUILDING COST($'1000):'.I8)
C
C****ADJUSTMENT OF ANNUAL RATES FOR INCREMENTATION PERIUD
C
    ES=1.00/N
C****REF 9
                            GM=GM**ES
C****REF 10
    XINF=XINF*ES
C****REF 11
    XNSAL=XNSAL*ES
    DO 50 I= 1.4
C****REF 12
    50 SURV(I)=SURV(I)**ES
C****TIME PERIOD MOVES AHEAD BY 1/N YEARS
C. N=NUMBER OF TIMES PER YEAR INCREMENTATION OCCURS
        NUMINC=IYEARS*N
        TINC=NUMINC
C****REF 19
            DO 1000 IT=1,NUMINC
            TI= IT
C
C****CALCULATION OF DISTRIBUTICN CF NON-PUBLIC ENROLLMENTS OVER GRADES
C****REF 2
        DO 60 I= 1.5
        60 C:AR(I) = FUNC(VRNP(I, 1), WRNP(I, 2),TINC,TI,ANT)
        TE=TL*ES-IT/N
        IF(TE.EQ.O)TZ=1
        IF(TE.NE.O)TZ=0
        ITZ=\Gamma&+1
C
C****CALCULATION BY INTERPOLATION OF FERTILITY RAIES
C****REF 3
        DO 100 IRES=1.4
        120 FT(IRES)=FUNC(FERT(IRES, 1), FERT (IRES, 2),TINC,TI,ES)
C
G****CALCULATION BY INTERPJLATION OF AGE/SCHOOL PARTICIPATION RATES
C****REF 4
                DO 130 IAGE=4,20
        130 PTR([AGE)=FUNC(PART(IAGE,1),PART(IAGE, 2),TINC,TI,ANT)
C
C****ADJUSIMENTS FOR INFLATION
C
C SPECIAL EDUCATION COSTS
            DO 70 I=1.6
C****REF 13
            70 Scosr(I)=SCosT(I)*(1+XINF)
C*REF 17* PER-PUPIL COSTS OF CONSTRUCTION
        DO 80 I=1.2
        DO 80 J=9.4
            80 }\operatorname{CopB}(I,J)=\operatorname{COPB}(I,J)*(1+XINP
```

C****HEEF 20
DO 900 IU=1.29
C****\&EF 21
DO 8כ0 I RES=1.4
C****REF 22
IF(IA(IRES,IU).EQ.O)GO TO }80
C POPULATION SECTOR
C
C****CALCULATION BY INTERPOLATION OF MIGRATION RATES
C****REF 5
DO 110 I=1,4
110 CM(I) =FUNC(RESMIG(I,IRES,IU,1),RESMIG(I,IRES,IU,2),
2TINC,TI,ESS
C****REF 23
PGP(21,IRES,IU)=GM*POP(21,IRES,IU)*(1+CM(4))
C****REF 24
BAB(1)=FT(IRES)*POP(21,IRES,IU)
DO 120 I AGE=1.20
IGM=IG(IAGE)
C****REF 25
POP 1= POP (IAGE, \ES,IU) *SURV (IRES)* (1+CM(IGM))
C****REF 25
BAB(IAGE+1)=FS*POP1
C****REF 27
120 POP(IAGE,IRES,IU)=BAB (IAGE) -BAB (IAGE+1) +POP1
IF(II.EQ. 1)GOTO 800
C
C****ENROLLMENT SECTOR
C
DO 150 IGRDE=2,15
LEVEL=IGR(IGRDE)
IF(LEVEL,NE.IGR(IGRDE-1))AROL=0
DO 140 IAGE=4,20
C****REF 23
140 AROL=LTR(IAGE)*ENRAT(IAGE,IGRDE-1) *FOP(IAGE,IRES,IU) + AROL
C****REF 29
150 ERMTS(LEVEI.) = AROL
C
C****CALCULATION OF NON-PUBLIC ENROLLMENT
C
cosTSE=C
ERMTS (6)=0
DO 170 I=1.7
170 SENUM (I,6)=0
WROL=0
TROL=0
C****REF6
RNP1= FUNC(RNP(IRES,IU,1),RNP(IRES,IU, 2),TINC,TI,ANT)
DO 16C LEVEL=1,5
C****REF 30
160 ERMTS(6) = ERMTS(6) +ERMTS (LEVEL)
@****REF 31
PNROL (6)=RNP1*ERMTS (6)
C****REF 33
PERMT(6) = ERM'IS(6) -PNROL (6)
DO 190 LEVEL=1.5
SENUM(7,LEVEL)=0.
C*****RFF 32
PNROL(LRVEL) =CHR(LEVEL)*PNROL(6)
C****REF 34
PERMI(LIEVEL) =EFMTS(LEVEL)-PNROL(LEVEL)

```
```

C
C****CALCULATION OF SPECIAL EDUCATION ENROLLMENTS
C
DO 180 I=1.6
C****REF 35
SENUM(I,LEVEL)=SER(LEVEL,I,IRES)*PERMT(LRVEL)
COSTSE=COSTSE+SENIM(I, LEVEL)*SCOST (I)
C****REF 36
SENUM (I,6)=SENUM(I, 6) + SENUM (T, LEVEL)
C****REF 37
180 SENUM (7,LEVEL) =SENUM (I,LEVEL) + SENOM (7,LEVEL)
SENUM (7,6)=S ENUM(7, LEVEL) +S ENUM (7,6)
C****REF 38
HROL=WROL+AXE2 (LEVEL) *(PERMT (LEVEL))
C****REF 39
190 TROL=TROL+(PERMT(LEVEL) -SENUM 17,LEVEL) +SENUM(6,LEVEL))*AXE1 (LEVRL)
C
C****SECTOR TO CALCOLATE DEMAND FOR TEACHERS
C
C****REF }
PT=PUNC(PUTCH(IRES,IU,1),PUTCH(IRES,IU,2),TINC,TI,ANT)
C****REF 40
TCDM= TROL/PT
C
C****SECTOR TO CALCOLATE SUPPLY OF TEACHERS
C
TSAL=0
TPETS=0
DO 200 ICLASS=1,6
C****REF }1

```

```

C****REF 41
WD=WDRAWS (ICLASS,1,IRES) *ES+TZ*WDRAMS(ICLASS,2,IRES)
C****REF 42
TPPTS=(1-HD*ES)*FRTS (ICLASS,IRES,IU)
C****REF 43
PROMO(ICLASS+1)=PR(IC LASS)*ES*TPFTS
C****REF 44
FETS(ICLASS,IRES,IU)=TPFTS+PROMO(ICLASS)-PROMO(ICLASS+1)
C****REF 45
200 TPETS=FETS(ICLASS,IRES,IU) +TPETS
C****REF 46
HIRED=TCDM-TFETS
TF(HIRED.GT.0)GO TO 210
HIRED=0
210 DO 220 ICLASS=1,6
C****REF 47,REF 48
FETS(ICLASS,IRES,IU)=PETS(ICLASS,IRES,IU)+HR(ICLASS,IRES)*
2HIRED
C****REF 49
TSAL=FETS(ICLASS,IRES,IU)*SAL(ICLASS,IRES,TU) +TSAL
220 CONTINUE
C****REF 50
TSAL=TSAL+.72*COS'TSE
C****CALCULATION OF TEACHER fringe benefits
C****REF 51
TSAL=1.078*TSSAL
C
C****BUILDING SECTOR
C

```
    \(X B C O S T(I T Z, I R E S, I U)=0\)
```

 DO 250 J=1.2
 250 TBLD(J)=0
 DO 230 I=1.8
 DO 23C J=1,2
 C****REF 52
BDGR=BLD(J,I,IRES,IU)*(1-ADIST(I)*TS)
C****REF 53
AGBLD(I+1)=.1*ES*BDGR
AGBLD(9)=0
C****REF 54
BLD(J,I,IRES,IU)=BDGR+AGBLD(I) - AGBLD(I+1)
C****REF 55
230 TBLD(J)=TBLD(J) +BLD(J,I,IRES,IU)
C****REF 56
SROL (1) =PERMT (1) + PERMT (2) + PERMT (3)
SROL (2) =PERMT(4) +PERMT (5)
DO 240 J=1.2
C****REF 57
XNWBLD (J) = SROL (J) -TBLD (J)
IF(XNWBLD(J).LT.O) XNWBLD(J)=0
C****REF 58
BLD (J,1,IRES,IU)=XNWBLD (J) + BLD (J, 1,IRES,IU)
C****REF 59
240 XBCOSI'(ITZ,IRES,IU) =XBCOST'(ITZ,IRES,IU) + XNWBLD(J)*COPB (J,IRES)
IF(IT.NE.NX2 (IST))GO TO 800
C
C****REVENUE SECTOR
C
C****INFLATION INCREASES
C****REF 15
SPPAY (IRES,IU) = SPPAY(IRES,IU)* (1+XINF)
C****REF 16
OSPAY(IRES,IU)=OSPAY(IRES,IU)*(1+XINF)
C****COMPUTE EFFECIIVE TOTAL MILLAGE
C****REF 6J
TMIL(IRES,IU)=TMIL (IRES,IU)*(1+ EELM (IRES))
C****:COMPUTE TOTAL PERSONAL INCOME
C****REF 8
PEINこ=FUNC(PI(IRES,IU,1),PI(IRES,IU,2),TINC,TI,ANT)
C****CCMPUIE PRESENT MARKET VALUE
C****REF 61
XMV = BMV(IRES,IU) +((PEINC-PI(IRES,IU,1))/PI(IRES,IU,1))
2*BMV(IRES,IU)*EF(IU)
C****COMPUPE LOCAL TAXFS
C****REF }6
LOCTAX=XMV*TMIL(IRES,IU)
C****CCMPUTE DIVISION OF LOCAL TAXES BETHEEN PROPERTY AND OTHER
C****REF 63
OLREV=OLRAT(IRES,IU)*LOCTAX
C****REF 64
PRTAX=LOCTAX-OLREV
C****CALCULATION OF DENSITY SPARCITY PAYMENTS
C****REF 65
DEN PAY=SPPAY(IRES,IU)*WROL
C****CALこULATICN OF TOTAL STATE ATD
C****REF 66
STFDS=DENPAY + OSPAY(IRES,IU) * WROL
C****PEDERAL FUNCS
C****RRF }6
TOTSL=STFDS+LOCTAX

```
        FEDFDS=PCEED(IRES,IO)*TOTSL
C****REF69
        TOTREV=FEDFDS+TOTSL
C
C****EXPENDITURE SECTOR
C
C FEDFRAL PROGRAM ADMINISTRATION COSTS
C****REF 70
        FPA=R(4,TRES,IU)*FEDFDS
C COSTS FOR SUPERVISORS' SALARIES
C****REF 71
        SSAL=R{5,IRES,II)*TSAL
C COSTS FJR OTHER INSTRUCTIONAL SALARIES
C****REF }7
            OISAL=R(6,IRES,IU) *TSAL
C COSTS FOK SECRETARIAL SALARTES
C****REF 73
        SECSAL=R(7, I RES,IU)*TSAL
C OTHER INSTRUCTIONAL COSTS
C****REP 74
    OIX=R(8,IRES,IU)*TSAL
C COSTS FJR TOTAL INSTRUCTIONAI SALARIES
C****REF 75
        TISAL=TSAL+SSAL+OISAL
        X+SECSAL
C COSTS FJR ADMINISTRATIVE SALARIES-EDUCATICN
C****REF 76
        ASALE=R(1, IRES,IJ)*TISAL
C COSTS FOH ADMINISTRATIVE SALARIES-OTHER
C****REF 77
        ASALO=ASALE* (0.875)
C OTHER ADMINISTRATIVF COSTS
C****REF 78
        OADMX=R(3,IRES,IU)* (ASALE+ASALO)
C TOTAL ADMINISTRATIVE COSTS
C****REF 7 7 
            TADMX=OADMX+ASALO+ASALE+FPA
C TOTAL INSTRUCTIONAL COSTS
C****REF 80
        TIX=TISAL+OIX
C TOTAL PUPIL PERSONNEL COSTS
C****REF & 1
            PPX=R(9,IRES,IU)*TIX
C TOTAL CJSTS FOR OPERATIONS AND MAINTENANCE
C****REF }8
        OMX=R(10,IRES,IU)*TIX
C TOTAL FIXED COSTS
C****REF 83
            FCX=a(12,IRES,I|)*TIX
    C TOTRL COSTS FOR FOOD SERVICES
C****REP 84
        FOODX=R(13, IRES,IU) *'TIX
    C TOTAL COSTS FOR STUDENT ACTIVITIES
C****RFFF &j
        SACTX=R(14, IRES,IU)*TIX
    C TOTRL COSTS FOR COMHUNITY SERVICES
    C*****EFF86
        CONMX=R(15,IRES,IU)*TIX
    C TOTAL COSTS FOR HEALTH SERVICES
    C****REF 87
        SICK=R(17.IRES,IU)*TIX*10
```

C TOTAL こOST FOR TRANSEORTATION
TRANS=0
C*****ADJUSIMENT OF TRANSPORTATION COSTS FOR INFLATION
C****REF 18
TRCT(IRES,IU)=TRCT (IRES,IU)* (1+XINF)
C****REF88
TCTS=ERMTS(6)*TRAT(IRES,IU) *TRCT(IRES,IU)
C CURRENT EXPENDITURE
C****REF 89
CUEXP=0
LO 460 I=1,10
460 CUEXP=CUEXP+COSTS (I)
C****REF 91
CAPEX=R (22,IRES,IU)*CUEXP
C****REF 90
DEBTS=R(23,IRES,IU)*CUEXP
TOTEX=0
DO 470 I= 11,13
C****REF }9
470 TOTEX=TOTEX+COSTS(I)
ICL(3) = IRES
C****REF 93
DO 550 KX=1,3
ICX=ICL(KX)
I2=0
DO 510 I =1,10,2
I2=I2+1
NG1=NG(I)
NG2=NG(I +1)
DO 510 J=NG1,NG?
510 APOP(ICX,I2)=APOP (ICX,I2) +POP (J,IRES,IU)
DO 520 I=1,6
TRMT(ICX,I)=TRMT(ICX,I) +ERMTS (I)
PPNRL (ICX,I) = PPNRL (ICX,I) + PNiCOL (I)
PFETS (ICX,I) =PEETS (ICX,I) +FETS (I,IRES,IU)
PPRMI (ICX,I) = PPRMT (ICX,I) +PERMT (I)
DO 520 J=N SE,7
520 PSNUM (ICX,J,I) =SENUM (J,I) +PSNUM(ICX,J,I)
TROLI'(ICX)=TROL+TROLT (ICX)
TTETS (ICX) =TFETS+TTETS (ICX)
TOBD~ (ICX) =X BCOST (1,IRES,IU) + XBCOST (2,IRES,IU) +TOBDC (ICX)
DO 540 I= 1,19
540 TCosr(ICX,I) = CosTS(I) +T\operatorname{cosT}(ICX,I)
TSALE (ICX) =TSALF(ICX) +TSAL
DO 5j0 I =1,8
550 BLDT(ICX,I)=BLD(1,I,IRES,IU) +BLD(2,I,IRES,IU) +BLDT(ICX,I)
800 CONTLNUE
IF(IT.NE.NX2(IST))GO TO 900
IUX=IU
ICX=6
C****REF 94
850 DO 820 I=1,5
IPOP(I) = APOP (ICX,I) +. 5
820 CONTLNUE
DO 830 I=1,6
IRMTS (I) =TRMT(ICX,I) +. 5
I PNRL (I) =PPNRL (ICX,I) \&.5 C?
IPRMT (I) = PRRMT (ICX,I) +. 5
DO 810 J=NSE,7
810 ISPD(J,I) =PSNUM (ICX,J,I)+.5
830 IPETS(I) =PFETS (ICX,I) +. 5

```
```

 ISAL=TSALF(ICX)/1000+.5
 PT=TROLT (ICX)/TTETS (ICX)
 ICBLD=TOBDC (ICX)/1000+.5
 TOTAL=TCOST(ICX,14)
 DO 840 I=1.19
 PCOST(I) =TCOST (ICX,I)/PPRMT(ICX,6)
 IF(I.GT. 14)TOTAL=TCOST(ICX,19)
 PCTC(I) = (TCOST (ICX,I)/TOTAL) }%10
 840 ICOS! (I) =TCOST (ICX, I)/1000+.5
ICosi(20)=I\operatorname{cosT(19)-ICoST(14)}
DO 890 I=1.8
890 IBLD(I) = BLDT(ICX,I) +. 5
HRITE(0, 535)IUX,(ALPHA (Y, IUX),I=1,6),(LATE(I),I=1,3), IDATE(IST)
WRITí(6,505) (IPOP(I),I=1,5)
WRITE(6,605)
WRITE (6,645) (IPRMT (I),I=1,6)
WRITE (6,525) (IPNRL (I),I=1,6)
WRITE(6,545) ((ASN (MI,J),MI=1,7), (ISPD(J,M),M=1,6),J=1,7)
WRITE(6,515) {IRMTS(I),I=1,6)
WRITE(6,555) PT
WRITE(6,565) ((ALPH 1 (J), J=1,3),I, IFETS (I), I= 1,6)
WRITE(6,575) ISAL
WRITE (6,585)
WRITE(6,625)
WRITE(6,595) ((ACosT(I,J) ,I=1,8), ICosT(J), PCosT (J), PCTC (J),J=1, 14)
WRI TE (6,615)
WRITE(6,6 25)
WRITE (6,595)((ACOST (I,J) , I= 1,8) , ICOST (J), PCOST (J), PCTC (J),J=15, 19)
WRITE (6,635) ICOST (20)
WRITE(6,655) ((ALPH1(J),J=1,3),NN,NN=1,8)
WRITE (6,665) (IBLD (I),I=1,8)
WRITE (6,675) ICBLD
TSALP (ICX) =0
TTETS (ICX)=0
TROLI'(ICX)=0
TOBDC (ICX) =0
DO }860 I=1.
APOP(ICOX,I)=0
860 CONTINUE
DO 870 I=1.6
PFETS (ICX,I)=0
TRMT(ICX,I)=0
PQNRL (ICX,I) =0
PPRMT(ICX,I) =0
DO }770\mathrm{ J=NSE,7
770 PSNUM (ICX,J,I) = 0
870 CONTINUE
DO 8RO I=1,19
880 TCOS[(ICK,I)=0
DO 730 I=1,8
780 BLDT(ICX,I)=0
IF(IこX.LT.6)GO TO 920
900 CONTINUE
IF(IT.NE.NX2(IST)) GO TO 1000 T.?
DO 920 ICX=1.5
IUX=IUX+1
GO TO 850
920 CONTINUE
IST=IST+1
1000 CONTINUE
STOP 888

```
```

/*
// EXEC EDSIN,NAME='VEN1SBS.PEDAT',DISK=FILE27
// EXEC EDSIN,NAME='VEN1SBS.PETOT'.DISK=FILE32,
// INPUT='\&TEMP1',LRECL=130, BLKSIZE=3510
//SBSSTEP2 EXEC FORRIJN,CORE=150K
//GO.SYSIN DD LSN=\&INPUT,DISP=(OLD,DELETE)
//G0.FT02POO1 DD DSN=ETEMP1,DISE=(OLD,DELETE):
/*

```


\section*{APPENDIX F}

VARIABLE NAMES AND DEFINITIONS
\[
\because
\]

VARIABLE NAMES AND DEFINITIONS USED IN THE EDUCATIONAL FINANCE PLANNING MODEL
\begin{tabular}{|c|c|c|}
\hline ACOST & & Names of various expenditure/revenue categories \\
\hline ALPHA & & Names of residence categories, intermediate units and state \\
\hline ANT & \(=\) & Annual time \\
\hline APOP & \(=\) & Population by five-year age cohorts between ages 0 to 19 \\
\hline AROL & = & Enrollment by grade groupings; prekindergarten, kindergarten, 1-6, 7-8, 9-12 \\
\hline ASALE & \(=\) & Administrative salaries for education \\
\hline ASALO & \(=\) & Administrative salaries, other than education \\
\hline ASN & = & Names of special education programs \\
\hline AXE1 & \(=\) & Weighting matrix to provide ADA figures for public enrollment \\
\hline AXE 2 & = & Weighting factors to provide WADM from enrollment \\
\hline BAB & = & Number of a specific age group aging into the next age group \\
\hline BMV & \(=\) & Base market value \\
\hline CAPEX & \(=\) & Capital expenditures \\
\hline CHR & = & Ratio of grade level nonpublic enrollment to total nonpublic enrollment \\
\hline CM & = & Migration rate for each age group \\
\hline CONMX & = & Costs for community services \\
\hline COSTS & \(=\) & Expenditures and revenues for major accounting functions \\
\hline COSTSE & = & Per pupil costs for special education \\
\hline CUEXP & \(=\) & Current expenditures \\
\hline DEBTS & = & Debt Service \\
\hline DELM & \(=\) & Annual rate of change of millage by type of residence \\
\hline EF & = & Elasticity factor \\
\hline ENRAT & = & Enrollment rates by age and grade \\
\hline ERMTS & = & Total enrollment by grade classifications \\
\hline ES & = & Factor to account for number of increments per year \\
\hline FCX & \(=\) & Total fixed costs \\
\hline FEDFDS & = & Federal funds \\
\hline FERT & = & Fertility rates by type of residence for 1970/1980 \\
\hline FETS & = & Initial number of teachers in each age category by basic unit \\
\hline FOODX & = & Costs for food services \\
\hline FPA & \(=\) & Federal program administration costs \\
\hline GM & = & Annual rate of change in the number of women \\
\hline HIR & = & Ratio of teachers' age group hirings to total hirings \\
\hline HIRED & \(=\) & Total number of teachers hired \\
\hline
\end{tabular}

PART \(=\) School age participation rates for \(1970 / 1980\)
PCFED \(=\) Ratio of federal funds to state and local funds
PCOST \(=\) Per pupil expenditures and revenues by major accounting category
PCTC \(=\) Per cent of expenditures/revenues to total expenditures/revenues
PEINC \(=\) Total personal income
PENPAY \(=\) Density payments
PERMT \(=\) Public enrollment
PFETS \(=\) Supply of teachers by age category for each intermediate unit
PI \(=\) Personal income by residence for each basic unit 1970/1980
PNROL \(=\) Nonpublic enrollment by grade category for each basic unit
POP \(=\) Initial population by basic unit for single years of age 0-19
POPI \(=\) Population of basic unit after migration but before aging
PPNRL \(=\) Nonpublic enrollment by intermediate unit
PPX \(=\) Pupil personnel costs
PROMO \(=\) Number of teachers aging into unit age category
PRTAX \(=\) Tax revenue from property tax
PSNUN \(=\) Number of special education students by program by intermediate
PT \(=\) unit
PTR \(=\) Putio of population 0-19 participating in school
PUTCH \(=\) Pupilnteacher ratio for specific basic unit
\begin{tabular}{|c|c|}
\hline & Ratio of administrative salaries to total ins \\
\hline RC3 & Ratio of other administrative costs to total administration salaries \\
\hline R & Ratio of federal program administrative costs to total federal funds \\
\hline RC5 & Ratio of supervisors' salaries to teachers' salaries \\
\hline RC6. & Ratio of other instructional costs to teachers' salaries \\
\hline RC7 & Ratio of secretarial salaries to teachers' salaries \\
\hline RC8 & Ratio of other instructional costs to teachers' salaries \\
\hline RC9 & Ratio of pupil personnel costs to total instructional costs \\
\hline RC10 & Total of operation and maintenance costs to total instructional costs \\
\hline RC12.... \(=\) & Ratio of fixed costs to total instructional costs \\
\hline RC1 & Ratio of food service costs to total instructional cost \\
\hline RC14. & Ratio of student activity costs to total instructional costs \\
\hline RCl5 & Ratio of community services costs to total instructional costs \\
\hline RC17 & Ratio of health services costs to total instructional costs \\
\hline RC22 & Ratio of capital expenditure to current expenditure \\
\hline RC23 & Ratio of debt service to current expenditure \\
\hline RESMIG & Migration rates for age grouping for each basic unit 1970/1980 \\
\hline RINP & Ratio of nonpublic enrollment to total enrollment for each basic unit \\
\hline
\end{tabular}
SACTX \(=\) Costs for student activities
SAL \(=\) Average salary for teachers by age category for basic unit
SCOST \(=\) Cost per pupil for special education programs
SECSAL \(=\) Secretarial salaries
SENUM \(=\) Number of special education students by program
SER \(=\)\begin{tabular}{l} 
Ratio of special education pupils by program and type of \\
residence to total enrollment
\end{tabular}
SICK \(=\) Costs for health services
SPPAY \(=\) Density/sparsity payments per WADM
SSAL \(=\) Supervisors salaries
STFDS \(=\) Total state payments
SURV \(=\) Survival rates by type of residence
TADMC \(=\) Total administrative costs
TCDM \(=\) Total teacher demand
TCOST \(=\) Expenditure and revenue for each intermediate unit by accounting
TE \(=\) Dutegory
TFETS \(=\) Number of teachers by age category for each basic unit
TFFTS \(=\) Dunmy variable used in calculating TFETS
TI \(=\) Decimal format for IT
TINC \(=\) Decimal format of NUMINC
TISAL \(=\) Total instructional salaries
TIX \(=\) Total instructional costs
TMIL \(=\) Total mills on market value
TMLX \(=\) Effective total millage
TPEN \(=\) Ratio of 1980 nonpublic enrollment to 1970 by type of residence
TOTAL \(=\) Dummy variable to change base for calculating per cent of

TOTREV \(=\) Total revenue
TOTSL \(=\) Total state payments plus local taxes
TRANS \(=\) Costs for transportation
TRAT \(=\) Ratio of pupils transported to total enrollment for each basic

TRCT \(==\) Transportation cost per pupil for each basic unit
TROL \(=\) Total publicenrollment per basic unit
TROLT \(=\) Total public enrollment per intermediate unit
TSAL \(=\) Teachers salaries per basic unit
TSALF \(=\) Teachers salaries per intermediate unit
TTETS \(=\) Number of teachers per intermediate unit
TZ \(=\) Variable to determine which teacher withdrawal rate to use
TOTEX \(=\) Total expenditures

WD \(\quad=\) Number
WDRAWS \(=\) Proportion of teachers withdrawing from an age category
WRNP \(=\) Distribution of nonpublic enrollment over grade levels
WROL \(=\) WADM

XINF \(=\) Rate of inflation
XMV \(=\) Present market value
XNSAL \(=\) Real increase in teachers'salaries
appendix G

USER'S MANUAL AND GUIDE

50

\section*{1. General}

This short manual when used in conjunction with the model description (Chapter III) and the data descriptions (Chapter II and Appendix C) should allow one to perform simulations on the Pennsylvania Educational Finance Planning Model. It's to be noted that the planning model is still in a prototype state and improvements have to be made both with the basic program and also with the data handling capabilities. At present, no data update capability is available and the user must resort to the tedious job of manually revising the data decks. An update capability should be available in the near future.

The model and data are on the following media:
```

a. a Fortran program (card deck)

```
b. control data (card deck)
c. basic data (tape, record length-130)

Control data is comprised of data which is more likely to be changed in simulation runs than the basic data. It has been placed on cards to simplify revision.
2. Job Control Language

In order to compile the Fortran program it is necessary to use the 131 K compiler. The Job Control Language (JCL) for this step is:
\[
\begin{array}{llllllllllllllllllll}
C & & & & & & & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\text { Co1. } 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0
\end{array}
\]
\[
/ \quad / \quad \mathrm{S} \quad \mathrm{~T}
\]
\[
1 / \mathrm{J} \quad 0 \quad \mathrm{~B}
\]
\[
1 / \quad \mathrm{P} \quad \mathrm{~A} \quad \mathrm{R}
\]
\[
1 / \mathrm{P} \quad \mathrm{~A} \quad \mathrm{R}
\]
\[
\begin{array}{llllllllllll}
1 & \mathrm{E} & \mathrm{X} & \mathrm{E} & \mathrm{C} & \mathrm{~F} & 0 & \mathrm{R} & 1 & 3 & I
\end{array}
\]

\section*{Program}
\(\begin{array}{llllll}/ & / & L & N & \text { K } & E \\ / & & \text { E } & \text { X } & \text { E } & \text { C }\end{array}\)

Data
/ / E N D

Once a "basic run" has been achieved, the user may wish to make further runs with parameter changes. A description of the layout of the control data follows.
3. Control Data*

Card 1
Positions 1,2--number of times per year incrementing occurs
Positions 3,4--total number of years model is to run
Positions 5,6--control of special education outp:ats
\(1=\) output by special education program and total
2 = output of total special education only
Card 2
Positions 1,2--number of times output is printed
Positions 3,4--number of time periods before output is first printed

Positions 5,6--number of periods output printing occurs
Positions \(2 n+1,2(n+1)--n u m b e r\) of periods output printed for the nth time

Card 3
Positions 1-5 (3 decimal places)--rate of inflation (annual)
Positions 6-10 (3 decimal places)--real increase in teachers' salaries)

Card 4
Positions 1-4--Per pupil cost for educable mentally retarded
Positions 5-8--Per pupil cost for +rainable mentally retarded
Positions 9-12--Per pupil cost for physically handicapped
Positions 13-16--Per pupil cost for socially and emotionally disturbed

Positions 17-20--Per pupil cost for gifted
Positions 21-24--Per pupil cost for itinerant

\footnotetext{
*All data is right justified. Comments concerning decimal places indicate the format of the variable.
}

\section*{Card 5}

Positions 3-7-annual change in effective millage rate-residence 1

Positions 8-12--annual change in effective millage rate-residence 2

Positions 13-17--annual change in effective millage rate-residence 3

Positions 18-22--annual change in effective millage rate-residence 4

\section*{Card 6}

Positions 3-7 (4 decimal places) fertility ratem-residence 1 (1970)

Positions 8-12 (4 decimal places) fertility rate--residence 2 (1970)

Positions 13-17 (4 decimal places) fertility rate-residence 3 (1970)

Positions 18-22 (4 decimal places) fertility rate--residence 4 (1970)

\section*{Card 7}

Same as Card 6 except fertility rates are for 1980.

\section*{Card 8}

Positions 3-7 (4 decimal places) survival rate--residence 1
Positions 8-12 (4 decimal places) survival rate--residence 2
Positions 13-17 (4 decimal places) survival rate--rasidence 3
Positions 18-22 (4 decimal places) survival rate-mesidence 4
Card 9
Positions 3-7 (4 decimal places) ratio nf number of women in 1980 over women in 1970

Card 10
Positions 1-4 (3 decimal places) ratio of 1980 nonpublic enrollment to 1970's for residence 1

Positions 5-8 (3 decimal places) ratio of 1980 nonpublic enrollment to 1970 's for res: dence 2

Positions 9-12 (3 decimal places) ratio of 1980 nonpublic enrollment to 1970 's for residence 3

Positions 13-16 (3 decimal places) ratio of 1980 nonpublic enrollment to 1970 's for residence 4

\section*{Card 11}

Positions 1-4--ratio of nonpublic prekindergarten enrollment to total nonpublic (1970)

Positions 5-8--ratio of nonpublic kindergarten enrollment to total nonpublic (1970)

Positions 9-12--ratio of nonpublic grades 1-6 enrollment to total nonpublic (1970)

Pcaitions 13-16-ratio of nonpublic gracies 7-8 enrollment to total nonpublic (1970)

Positions 17-20--ratio of nonpublic grades 9-12 enrollment to total nonpublic (1970)

Card 12
Same as Card 11 except for 1980
Card 13-46
First 20 positions or card detail names of intermediate units, type of residence categories and total state.

\section*{Card 47}

\section*{Position 1--residence 1 classification}

Positions 2-5--ratio for educable mentally retarded grades 1-6
Positions 6-9-ratio for educable mentally retarded grades 7-8
Positions 10-13-ratio for educable mentally retarded grades 9-12

Positions 14-17--ratio for trainable mentally retarded grades 1-6

Positions 18 -21--ratio for trainable mentally retarded grades 7-8
\[
\underset{\sim}{x}
\]

Positions 22-25--ratio for trainable mentally retarded grades 9-12

Positions 26-29--ratio for physically handicapped grades 1-6
Positions 30-33--ratio for physically handicapped grades 7-8
Positions 34-37--ratio for physically handicapped grades 9-12
Positions 38-41--ratio for socially and emotionally disturbed grades 1-6

Positions 42-45--ratio for socially and emotionally disturbed ( grades 7-8

Positions 46-49--ratio for socially and emotionally disturbed grades 9-12

Positions 50-53--ratio for gifted grades 1-6
Positions 54-57--ratio for gifted grades 7-8
Positions 58-61--ratio for gifted grades 9-12
Positions 62-65--ratio for itinerant grades 1-6
Positions 66-69--ratio for itinerant grades 7-8
Positions 70-73--ratio for itinerant grades 9-13
Card 48
Same as Card 47 except for residence 2

Card 49
Same as Card 47 except for residence 3
Card 50
Same as Card 47 except for residence 4
Card 51-57
First 24 positions on cards detail names of special education program types

Card 58-76
First 32 positions on cards décail expenditure or revente names

\section*{Card 76}

Positions 1-3 (3 decimal places) proportion of buildings in age group 1 to be replaced annually

Positions 5-8 (3 decimal places) proportion of buildings in age group 2 to be replaced annually

Positions 9-12 (3 decimal places) proportion of buildings in age group 3 to be replaced annually

Positions 13-16 (3 decimal places) proportion of buildings in age group 4 to be replaced annually

Positions 17-20 (3 decimal places) proportion of buildings in age group 5 to be replaced annually

Positions 21-24 (3 decimal places) proportion of buildings in age group 6 to be replaced annually

Positions 25-28 (3 decimal places) proportion of buildings in age group 7 to be replaced annually

Positions 29-32 (3 decimal places) proportion of buildings in age group 8 to be replaced annually

Card 77
Positions 1-4--Per pupil cost of buildings in residence l-Elementary
Positions 5-8--Per pupil cost of buildings in residence 1-Secondary Positions 9-12-Per pupil cost of buildings in residence 2-Elementary Positions \(13-16\)-Per pupil cost of buildings in residence 2 -Secondary Positions 17-20-Per pupil cost of buildings in residence 3-Elementary Positions \(21-24-\) Per pupil costoof buildings in residence 3 -Secondary Positions \(25-28-\mathrm{Per}\) pupil cost of buildings in residence 4 -Elementary Positions \(20-32-\) Per pupil cost of buildings in residence 4 -Secondary

This covers all cards in the control card deck. The user can change a parameter in the model by merely changing the data on the cards.

Example: If the planner wishes to assumer higher inflation rates than those assumed in the basic model and/or higher real increases for teachers' salaries, he must change the data on Card 3 to reflect his assumption.

The basic data contained on tape is described on the attached file layout. In the present stage of model development there is no easy way to change this data. It would require a programmer to create a new tape to incorporate a desired parameter change. A routine to update this file in a much less tedious manner is planned for the near future.

FILE LAYOUT OF DATA ON TAPE
This file is held on tape. Record length is 130 bytes. Blacksize is 3510. Subsets of records have different layouts. These are described below.

Subset 1 (First 73 records)

Population--each record is for basic unit:
Bytes 1-3--code for basic unit
20--6 byte fields for age groups 0-19
1--7 byte field for women 15-44
Subset 2 (Records 74-219)
Migration rates- -(odd numbered records 1970, even numbered 1980):
Bytes 1-3--code for basic unit
Bytes 4-5--year
Bytes 6-11--migration rate for age group 0-6 (4 decimal places, .0000)
Bytes 12-17--migration rate for age group 7-15 (4 decimal places, .0000)
Bytes 18-2 3--migration rate for age group 16-19 (4 decimal places, .0000)
Bytes 24-29--nligration rate for women 15-44 (4 decimal places, .0000)

Subset 3 (Records 220-236)
Participation rates and enrollment rates:
Bytes 1-2--Blank
Bytes 2-4-age (ages 3-19)
1--3 byte field for age-school participation (1970) (3 decimal places, .000)
1--3 byte field for age-school participation (1980) (3 decimal places, .000)
14--3 byte fields for age-enrollment rates (3 decimal places, .000)

Subset 4 (Records 237-309)
Transportation, nonpublic ratios:
Each record in this subset represents a basic unit.
Bytes 1-3--code for basic unit
Bytes 4-7--ratio of pupils transported to total enrollment (3 decimal places, . 000)
Bytes 8-12-~ per pupil cost of transportation (2 decimal places, .00)
Bytes 13-20--blank
Bytes 21-24 ~-ratios of nonpublic enrollment to total enrollment (3 decimal places, . 000 )

Subset 5 (Records 310-313)
Ratio of hirings to number of teachers in an age group for the four residence classifications:

Byte 1--residence classification
6--4 byte fields for hiring rates (4 decimal places, .0000)
Subset 6 (Records 314-321)
Ratio of teachers withdrawing by age group to total withdrawals:
Byte 1-residence classification
Byte 2--blank
6--4 byte fields for withdrawal rates ( 4 decimal places, . 0000)
Subset 7 (Records 322-394)
Pupil-teacher ratios for 1970/1980 for each basic unit:
Bytes 2-4--Intermediate Unit Number
Bytes 1-2--Type of Residence
Bytes 5-9--pupil-teacher ratios 1970 (1 decimal place, 00.0)
Bytes 10-14--pupil-teacher ratios 1980 ( 1 decimal place, 00.0)
Subset 8 (Records 39.5-467)
Supply and average salary of teachers by age sroup and basic unit:
Bytes 1-3--basic unit code
Bytes 4-8--number of teachers in age group 1
Bytes 9-13--average salary of age group 1
Bytes 14-18--number of teachers in age group 2
Bytes 19-23--average salary of age group 2
Bytes 24-28--number of teachers in age group 3
Bytes 29-33--average salary of age group 3
Bytes 34-38--number of teachers tin age group 4
Bytes 39-43--averagesalary of age group 4
Bytes 44-48-number of teachers in age group 5
Bytes 49-53--average salary of age group 5
Bytes 54-58--number of teachers in age group 6
Bytes 59-63--average salary of age group 6
Subset 9 (Records 468-540)
Expenditure ratios by basic unit:
Bytes 1-3.--basic unit code
Al1 of the following have 4 decimal places, (.0000)
Bytes 4-9--administrative salaries/total instructional costs
Bytes 10-15--blank
Bytes 16-2l--administrative costs/administrative salaries

Bytes 22-27--federal program administration costs/federal funds Bytes 28-33--supervisors' salaries/teachers' salaries
Bytes 34-39--other instructional costs/teachers' salaries
Bytes 40-45--secretarial salaries/teachers' salaries
Bytes 46-51--instructional expense/teachers' salaries
Bytes 52-57--pupil-personnel/total instructional costs
Bytes 58-63--operations and maintenance costs/total instructional costs
Bytes 64-69--blank
Bytes 70-75--fixed costs/total instructional costs
Bytes 76-81--food services costs/total instructional costs
Bytes 82-87--student/activity costs/total instructional costs
Bytes 88-93--community service/total instructional costs
Bytes 94-99--blank
Bytes 100-105--health services/total instructional costs
Subset 10 (Records 541-613)
Additional expenditures ratios by basic unit:
Bytes 1-3--basic unit code
Bytes 4-8--capital expenditure/current expenditure ( 4 decimal places .0000)
Bytes 9-13--debt service/current expenditure (4 decimal places, .0000)
Subset 11 (Records 614-686)
Revenue distribution data for each basic unit:
Bytes l-3--basic unit code
Bytes 4-7--federal funds/total state and local ( 4 decimal places, . 0000)
Byte 8--blank
Bytes 9-12--other local revenie/total local revenise (4 decimal places, . 0000)

Subset 12 (Records 687-759)
State payments for density/sparsity:
Bytes 1-3--basic unit code
Byte 4--blank
Bytes 509 --density/sparsity per WADM (2 decimal places, 000.00)
Bytes \(10-14--0\) ther \(s t a t e\) payments per WADM (2 deciimal places, 000.00)
Subset 13 (Records 760-832)
Data on property tax revenues by basic unit:
Bytes 1-3--basic unit code
Bytes 4-14--market val ue of taxable property
Bytes 15-24--blank
Bytes 25-27--effective millage rate (1 decimal place, 00.0)

Subset 14 (Records 833-861)

Elasticity factor relating growth in market value to personal income by basic unit:

Bytes 1-2--intermediate unit number
Bytes 3-10--elasticity factor (3 decimal places, 00000.000)
Subset 15 (Records 862-934)
Personal income 1970/1980 by basic unit:
Bytes 1-3--basic unit code
Bytes 4-12--personal income 1970
Bytes 13-21--personal. income 1980
Subset 16 (Records 935-1007)
Building capacity (elementary "and secondary) by age group for each basic unit:
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Bytes 1-3--basic unit code} \\
\hline \multicolumn{2}{|l|}{Bytes 4-9--capacity of elementary schools age group 1} \\
\hline & 10-15--capacity of secondary schools age group \\
\hline & pacity of elementary schools \\
\hline & 22-27--capacity of secondary schools age gr \\
\hline & 28-33--capacity of elementary schools age group \\
\hline Byt & 34-39--capacity of secondary schools age group 3 \\
\hline By & 40-45--capacity of elementary schools age group \\
\hline & 46-51--capacity of secondary schools age group \\
\hline By & 52-57--capacity of elementary schools age grou \\
\hline By & 58-63--capacity of secondary schools age group 5 \\
\hline By & 64-69--capacity of elementary schools age group \\
\hline By & 70-75--capacity of secondary schools age group 6 \\
\hline By & 76-81--capacity of elementary schools age group \\
\hline & 82-87--capacity of secondary schools age group \\
\hline Byt & 88-93--capacity of elementary schools age group \\
\hline & \\
\hline
\end{tabular}


BIBLIOGRAPHY

110
ERIC
1,5

\section*{REFERENCES}

An Intermediate Unit for Pennsylvania. State Board of Education, 1967. Annual Certification of the Pennsylvania State Tax Equalization Board. Commonwealth of Pennsylvania, 1965, 1966, 1967, 1968, 1969. Armitage, Peter and Smith, Cyril. "The Development of Computable Model of the British Educational System and Their Possible Users," Mathematical Models in Educational Planning. Paris: Organization for Economic Cooperition and Development, 1967.
Calculator. Bureau of Educational Statistics, Pennsylvania Department of Education, Vol. XIII, No. 3, 1971.
Correa, Hector. Quantitative Methods of Educational Planning. Scranton, Pennsylvania: International Textbook Company, 1969.
Economic Problems of Nonpublic Schools. Office of Educational Research, University of Notre Dame, 1971.
Establishing the Internediate Unit. Pennsylvania Department of Education, 1970.

Forrester, Jay. Industrial Dynamics. Cambridge, Massachusetts: Massachusetts Institute of Technology Press, 1961.
Fleindcrfer, George B. and Roy, Latet, M.S. A Model for Educational Planning in East Pakistan. Islamabad, Pakistan: Ford Foundations, 1969.
Llewellyn, Robert W. FORDYN An Industrial Dynamics Simulator. North Carolina State University, 1965.
Mathematical Models in Educational Planning. Organization for Economics Cooperation and Development, Paris, 1967.
NEFP Decision Process. National Education Finance Project, 1971.
Our Schools Today, Public School Financial Statistics Report 1968-69. Bureau of Educational Statistics, Pennsylvania Department of Education, 1970.

Our Schools Today, Public School Financial Statistics Report 1969-70. Bureau of Educational Statistics, Pennsylvania Department of Education, 1971.

Our Schools Today, Nonpublic Secondary School Report 1970-71. Bureau of Educational Statistics, Pennsylvania Department of Education, 1971. Our Schools Today, Professional Personnel Report 1970-71. Bureau of Educational Statistics, Pennsylvania Department of Education, 1971. Our Schools Today, Public Elementary Report 1970-71. Bureau of Educational Statistics, Pennsylvania Department of Education, 1971.
Our Schools Today, Public Secondary School Report 1970-71. Bureaי of
Educational Statistics, Pennsylvania Department of Education, 1971.
Our Schools Today, Public School Building Report 1969-70. Bureau of Educational Statistics, Pennsylvania Department of Education, 1970.
Our Schools Today, Public School Building Report 1970-71. Bureau of Educational Statistics, Pennsylvania Department of Education, 1971.
Pennsylvania Population Growth and Net Migration 1960-1970. Bureau of Educational Research, Pennsylvania Department of Education, 1971.
Preliminary Projections of Employment and Population. State Planning Board, Commonwealth of Pennsylvania, 1971.
Projections Selected Statistics for Pennsylvania to 1979-80. Bureau of Educational Statistics, Pennsylvania Department of Education, 1970. Projections Selected Statistics for Pennsylvania to 1980-81. Bureau of Educational Statistics, Pennsylvania Department of Education, 1971.

Katio '70: A Listing of Teacher-Pupil and Staff Per 1000 Pupils Ratios in Public Schools 1970-71. Bureau of Educational Statistics, Pennsylvania Department of Education, 1971.
Special Education Programs for Exceptional Children, 1968-69. Pennsylvania Department of Education, 1970 .
Special Education Programs/Service 1970-71. Pennsylvania Department of Education, 1971.
Special Education Programs/Service 1969-70. Pennsylvania Department of Education, 1970.
Stallard, Troy Francis. A Computerized Model of a Public School System. Raleigh: Center for Occupational Education, North Carolina State University, 1970.
Thonstad, Tore. Education and Manpower: Theoretical Mudels and Empirical Application. Toronto: University of Toronto Press, \(\overline{\mathbf{1} 968 .}\)```


[^0]:    *See Appendix 13 for a list of intermediate units.
    **See Appendix $\Lambda$ for definitions of type of residence and individual school administrative unit classifications.

[^1]:    *Example: REF. 9 in Chapter III can be used to located the program statements (Appendix E) associated with the calculations. REF. 9 in the program in on page 83.

[^2]:    *For the first age group this is equal to the number of births.

[^3]:    *Weighting to establish WADM

[^4]:    *T2 $=0$ when time period is fractional year
    $\mathrm{T} 2=1$ at year end

[^5]:    *This number is zero for the first age group. **This number is also zero for the last age group. Hiring will cover all new entries into group as withdrawals will cover all retirements from the final age group.
    ***Total new hirings is not allowed to be negative.

[^6]:    *These relationships are defined in Chapter III

[^7]:    *Thousands of dollars
    $\star{ }^{*}=$ Metropolitan--Center City, $2=$ Metropolitan-0ther, 3 = Suburban or small commuity, 4 = Rural

[^8]:    *Thousands of dollars
    Anl = Metropolitan-Center City, 2 = Metropolitan, 3 = Suburban or small community, $4=$ Rural

[^9]:    *Southwestern
    **Clarion Manor
    ***Appalachia

[^10]:    *Number of births per 100 women aged 15-44

[^11]:    Type of

[^12]:    *1 = Metropolitan--Center City, $2=$ Metropolitan-0ther, 3 = Suburban or small community, $4=$ Rural

[^13]:    *1 $=$ Metropolitan--Center City, 2 = Metropolitan--Other, 3 = Suburban or small community, $4=$ Rural

[^14]:    $*_{1}=$ Metropolitan--Center City, $2=$ Metropolitan-Other, $3=$ Suburban or small community, 4 = Rural

[^15]:    *1 = Metropolitan--Center City. 2 = Metropolitan--Other, $3=$ Suburban or small community, $4=$ Rural

